Configuration and diagnostics for UNIFREM VF frequency converters

1 Contents
2 Structure and types of parameters in the document 6
2.1 Defining the meaning and type of parameters in part DIAGNOSTICS 6
2.2 Defining the meaning and type of parameters in part SETTINGS 7
2.3 Type of parameters defining in the part SAVE / RESTORE 12
3 Range of parameters by product type 13
3.1 Undervoltage, overvoltage 13
3.2 Temperatures 13
4 DIAGNOSTICS 14
4.1 Command 14
4.2 Control 14
4.2.1 Power and energy 15
4.2.2 Additional quantities 15
4.3 Inputs and outputs 16
4.3.1 BIN 16
4.3.2 AIN 16
4.3.3 RELAYS 17
4.3.4 AOUT 17
4.4 Functions 17
4.4.1 PLC function 17
4.4.2 Limit switches 18
4.4.3 Process controller 18
4.4.4 Optimization 19
4.4.5 Ext. thermal protection 19
4.5 Converter state 19
4.6 Thermal protections 20
4.7 Communication 21
4.7.1 MODBUS 21
4.7.2 PROFIBUS 21
4.7.3 RS LINKS 22
4.8 SW and HW version 23
4.9 Date and Time 23
5 WARNINGS 24
6 ERRORS 27
7 SETTINGS 30
7.1 LOAD (MOTOR) 30
7.2 CONVERTER PARAMETERS 31
7.2.1 APPLICATION MACROS 31
7.2.2 ENERGY CONS 32
7.3 COMMANDS 32
7.3.1 COMMAND MACROS 32
7.3.2 START STOP RESET 33
7.3.3 FREQUENCY SETPOINT 34
7.3.4 VOLTAGE SETPOINT 36
7.3.5 DISCRETE SETPOINTS 36
7.3.6 UP/DOWN COMMANDS 38
7.3.7 AUTO OFF 39
7.4 CONTROL AND REGULATION 40
7.4.1 V/f CONTROL 40
7.4.2 FREQUENCY RAMPS 40
7.4.3 VOLTAGE RAMP 43
7.4.4 VOLT. CONTROLLER 43
7.4.5 MAX. CURRENT CONTROLLER (MCC) 44
7.4.6 BRAKE MODULE 45
7.4.7 FLUX BRAKING 46
7.4.8 POWER RESTRICTION 46
7.5 INPUTS AND OUTPUTS 47
7.5.1 BINARY INPUTS 47
7.5.2 ANALOG INPUTS 48
7.5.3 RELAY OUTPUTS 52
7.5.4 ANALOG OUTPUTS 54
7.6 FUNCTIONS 56
7.6.1 PLC FUNCTIONS 56
7.6.2 LIMIT SWITCHES 65
7.6.3 PROCESS CONTROLLER 67
7.6.4 OPTIMIZATION 70
7.6.5 MECHANICAL BRAKE 72
7.6.6 EXTERNAL THERMAL PROTECTION (ETP) 72
7.7 FAULTS AND WARNINGS 74
7.7.1 OPTIONAL FAULTS 74
7.7.2 FAULT ACKNOWLEDGEMENT 75
7.7.3 QUANTITIES TO LOG 76
7.7.4 WARNINGS 76
7.8 DISPLAY 77
7.8.1 DISP. QUANT. SETTINGS 77
7.8.2 MONITOR SETTING 78
7.9 COMMUNICATION 78
7.9.1 MODBUS 78
7.9.2 PROFIBUS 81
7.10 PAR. SETS 82
7.10.1 SET SWITCH 83
7.10.2 USER SETS 84
8 Converter function configuration manual 93
8.1 Production (factory) settings 93
8.2 Load parameters (motor) 93
8.3 Control modes 93
8.3.1 INDEPENDENT CONTROL OF VOLTAGE AND FREQUENCY 93
8.3.2 V/f CURVE 96
8.4 Maximal current controller (MCC) 98
8.5 Flux braking 101
8.6 Power restriction 102
8.7 Optimization. 103
8.8 External thermal protection (ETP) 106
8.9 Using the parameter set switching for a special behavior of converter functions 108
9 Control panel - Unipanel user manual 112
9.1 Buttons 112
9.2 Panel start 113
9.3 Display 113
9.4 Converter status 113
9.5 Main menu F1 113
9.6 Monitor, monitor detail 116
9.7 Parameters setting 117
9.8 Graph 120
9.9 Parameter search 122
9.10 Device selection for control panel 123

WARNING

This manual dedicates to the parameters and options of VONSCH UNIFREM VF frequency converter settings and diagnostics.

2 Structure and types of parameters in the document

2.1 Defining the meaning and type of parameters in part DIAGNOSTICS

Parameter type: VALUE

Diagnostic parameter that displays the value of signal in physical units or in relative units or discrete number of sequences, steps, received data etc.

EXAMPLE:

Example for value diagnostics - the value display

Value - discrete number
$M E N U \backslash D I A G N O S T I C S \backslash$ Functions \backslash Lifting functions \backslash

Example of diagnostic value representing the number of illegal control drive sequences

Parameter type: WORD

Individual word bits status diagnostics. Each bit represents the status of one flag of a specific function or converter mode.

MENU \ DIAGNOSTICS \Functions \Lifting function			The basic diagnostic information about the impor
Name [ID]	Unit	Des	iption
OPS status [856]		Indi	es the status of the OPS switch block.
Reset	RESET signal of the OPS is active.		
Detection	Autodetection of the overload limits is running.		
Overload	Overload occurred. Operation in the positive direction (up) is blocked.		
Tipping	Too many forbidden tipping control commands.		
Settling	Drive operates in static mode.		
Dynamics	Drive operates in dynamic mode.		
Individual word bits description	Addi word	nal did ts vie	nostic information about word bits view, status of respectively meaning of word bits

EXAMPLE:

MENU \DIAGNOSTICS \Inputs / outputs \Relay

	Relay
RELAY1	\square
RELAY2	\square
RELAY3	\square

Output relays status diagnostics

Parameter type: CONSTANT

Diagnostic information, which takes a fixed value.

| MENU \DIAGNOSTICS \SW and HW version \} $\\ {\hline \multicolumn{1}{\|c\|}{\text { Name [ID] }}\text { Name [ID] }} &{\text { Unit }} &{\text { Description }} \\ {\hline \text { SW Version [379] }} &{ } &{\text { Converter SW version }} \\ {\hline}$ |
| :--- | :--- | :--- |

Constant description

EXAMPLE:

Parameter type: DATE TIME

Diagnostic value of the date or time format.

MENU \backslash DIAGNOSTICS I
Time
$14: 28: 50$

2.2 Defining the meaning and type of parameters in part SETTINGS

Parameter type: THE VALUE

Possibility of parameter value setting in absolute or relative units.

MENU \ SETTINGS \MOTOR \	Basic information about the importance of the parameter	
Name [ID]	Description	Def.
Nom. Current [151]	Nominal motor current, readiom the nameplate or catalog data.	$2.80 \mathrm{~A}$
$0.01 \mathrm{~A} \div 1000.00 \mathrm{~A}$	This parameter determines the value of permanent motor current for motor overload protection P[2N Motor overloading.	

Range of the value, that parameter can take Min \div Max

Additional information about the importance of the parameter

The default value of the parameter The value that is set at factory settings restoration

EXAMPLE:

MENU \ SETTINGS \MOTOR \

Parameter type: CALCULATED PARAMETER

Parameter, that is derived by calculation based on the values of other parameters.
MENU \SETTINGS \MOTOR \SPECIAL PARAMETERS \}

Name [ID]	Description	Def.
Nr of motor poles [1049]	Numbor of motor poles calculated from the nominal rpms and the motor frequency.	
$2 \div 1000$		

Additional information about derivation of parameter calculation

EXAMPLE:

MENU \SETTINGS \MOTOR \SPECIAL PARAMETERS \

Example of the calculated parameter

Parameter type: SELECTION

Type of parameter with option to select only one setting option (alternative).

Basic information about type of parameter - selection

Name [ID]	Description	Def.
Start source [194]	Setting the converter start source. The START command generates the desired voltage and frequency on the U,V,W outputs (or U,V for a single phase load).	BIN1
Control panel	Pressing the green START button on the control panel causes the converter to start. The start is canceled by pressing the red STOP button.	
Permanent start	The converter starts immediately after the switch on. BIN1	The converter start after the activation of the 1st binary input.
BN5	The converter starts after the ac.vation of the 5th binary input.	
BIN6	The converter starts after the activation of the 6th binary input.	
PROFIBUS	The converter start is controlled over the serial communication. See the MODBUS serial communication protocol.	The converter start is controlled over the serial cemmunication. See the PROFIBUS serial communication protocol.
Special	The converter start is controlled by a special preset signel and switching thresholds, see P[987] SPECIAL START.	

The name of specific (alternative) selection of parameter value

Additional information about the meaning of a specific parameter selection

EXAMPLE:

MENU \SETTINGS \COMMANDS \FREQUENCY SETPOINT \ ... I SETTINGS \FUNCTIONS \LOGICAL BLOCKS LB1 (Fast) \

Source of freq. setpoint
Value
Control panel
AIN1
AIN2
AIN3

LB10peration
OR
AND
XOR
RS
$=$

One setting option selection of selection type parameter examples

Parameter type: MULTIPLE SELECTION (MASK)

Parameter type with a option to select multiple possible value elections, modes, respectively active bit of parameter.

Basic information about the parameter type - multiple selection
MENU \ SETTINGS \CONTROL AND REGULATION \V/f CONTROL IV/f CURVE

Name [ID]	Description	Def.
V/f Type [347]	V/f Curve type. Selecting the featires of the V/f control method operation.	
\square IR compensation	Turns en the stator resistance loss compensation P[973] Compensation of IR (CIR). Requires correct value of the motor parameters and the stator resistance P[345] Stator resistance.	
\square ST contrpller	Turns on the starting toique controller P[29] ST Controller (STC) to boost starting torque.	

Names of parameter value elections (modes)

Additional information about the meaning of individual parameter elections (modes)

* When the square is black $■$ - the default setting is set

EXAMPLE:

V/t Type	
\mathbb{R} compensation	\mathbf{V}
ST controller	\mathbf{V}

Example: V/f curve operation mode selection

Parameter type: COMMAND

Command to execute a single action or operation on the converter. It is required to confirm the command before execution in the confirmation window.
MENU \SETTINGS \CONVERTER PARAMETERS \Energy consumption \}

Name [ID]	Description	Def.
Reset the consumption [897]	This oommand resets the counters of consumed energy.	
Name and command ID	Function, description and importance of the	

EXAMPLE:

eset the consumption

| Execute command? |
| :---: | :---: |
| Confirm F2. |
| Cancel ESC. |

This command resets consumed energy counters

Parameter type: SIGNAL

Parameter for dynamic ties and any parameter connection, that becomes a value source for a given function or for input of this function.
MENU \SETTINGS \INPUTS AND OUTPUTS \ANALOG INPUTS \AIN1 \ SPECIAL SETTING \}

Name [ID]	Description	Def.
AIM (Signal [251]	Sefootion of the signal that will be linearly recalculated according to the analog input.	$[-]$

Signal name

Type of signal selection from the diagnostics

EXAMPLE:

MENU \ SETTINGS \INPUTS AND OUTPUTS \ANALOG OUTPUTS \A01 \}

UTS AIMD OUTPUTS \MAALOG OUTPUTS $\backslash 001$		\square	Signal selection	
Signal (AO1_A)	0.00 A		MEEN	
Signal ($\mathrm{AO1} 1 _\mathrm{B}$)	4.40A		- Slip freq.	${ }_{0}^{0.00 ~ H z}$
AO1_A	0.00 mA		- Voltage DC	313.9 V
AO1_B	20.00 mA		Voltage MT	0.0 V
A01 Signal	Current MT]		Current MiT	0.00 A

Selection of the signal that will linearly recalculate the analog output AO1

Parameter type: DYNAMIC VALUE (Linked parameter)

Parameter is dynamically set to the value that is inherited from another parameter (usually from the signal type parameter).
MENU \SETTINGS \INPUTS AND OUTPUTS \RELAY OUTPUTS \Relay 1 \SPECIAL SETTING \}

Name [ID]	Description	Def.
R1 switch on [301]	Conflitions for R1 switch on.	Run \|

Name and ID of the dynamic parameter
Default value of the dynamic value parameter

EXAMPLE:

The condition for RELAY switching „R1 switch on [301]" - If any parameter (e.g. Cooler temperature [74]) is selected as „R1 Signal [189]":

MENU \backslash SETTINGS \backslash INPUTS AND OUTPUTS IRELAY
OUTPUTS \Relay 11

Special source of Relay R1 switch setting

MENU \ SETTINGS \INPUTS AND OUTPUTS \RELAY
OUTPUTS \Relay 1 \SPECIAL SETTING R1 \

AY OUTPUTS Relay	TSPECIAL SETTING R1
R1 Signal	Cooler tempe.
R1 switch on	$40.0^{\circ} \mathrm{C}$
R1 switch off	$40.0^{\circ} \mathrm{C}$

Relay R1 switches on when heatsink temperature exceeds the set level

The condition for RELAY switching „R1 switch on [301]" - If status word is selected as „R1 Signal [189]":

	R1 switch on	
AY OUTPUTS R Relay 1 ${ }^{\text {SPPECIAL SETTIIIG }}$ R1	Error	\checkmark
R1 Signal Converter st..	SW_Err_Pin	\square
R1 switch on Error	Operation	\square
R1 switch off	DC charged	\square
	MT excited	\square

Parameter type: PASSWORD

Parameter to enter a password to allow access to the specific levels of converter setting respectively to unlock some of the modes.
The password characters can be $\{0 . .9, \mathrm{~A} . \mathrm{Z}\}$.
MENU \SETTINGS \CONVERTER PARAMETERS \}

Name [ID]	Description	Def.
Password [548]	Setting the eser password for access to the device settings. Password needs to be entered when entering the converter settings.	0 *
0 * $\div 0$ *	Protects the converter settings against reconfiguration by unauthorized persons.	

Basic information about the importance of the parameter

EXAMPLE:

Example of password entry

UNIPANEL - PASSWORD SETTING

Set the required password character:

Cursor position change:

After setting the password, press ENTER to confirm.

2.3 Type of parameters defining in the part SAVE / RESTORE

Parameter type: PATH

Parameter of root parameters directory choice defining.
MENU \ SAVE / RESTORE \Parameters backup \ Parameter transfer \}

Name [ID]	Description	Def.				
Directory [-]	The choice of which part of the parameters will be restored. If nothing is selected, all will be restored.	INPUTS AND OUPUTS				
$0{ }^{*} \div 0$ *						
Basic information about the importance of the parameter					The selected path in the tree hierarchy	

EXAMPLE:

Parameters transfer	
Root	\|NPUTS AND..
From set	Set 1
To set	Set 3
Transfer	
Transfer + service	

INPUTS AND OUTPUTS root directory selection for the transfer of parameters from set 1 to set 3

3 Range of parameters by product type

3.1 Undervoltage, overvoltage

	Undervoltage [V]	Overvoltage [V]
Unifrem 230 M VF	220	420
Unifrem 400 VF, 400 M VF	425	735

3.2 Temperatures

	Warning line [$\left.{ }^{\circ} \mathrm{C}\right]$	Fault line [$\left.{ }^{\circ} \mathrm{C}\right]$
CB temperature [75]	55	70
Cooler temperature [74] Unifrem 230M VF, 400 M VF Unifrem 400 011VF-400 090VF	75	90
Cooler temperature [74] Unifrem 400 110 VF $-400 ~ 200 ~ V F ~$	110	125

4 diagnostics

Group of parameters number [2]
Diagnostic information (quantities and states).

4.1 Command

Group of parameters number [758]
Quantities affecting the converter control, inputs and outputs.
MENU \DIAGNOSTICS \COMMAND

Name [ID]	Description	Dim.
Freq. setpoint [162]	Frequency setpoint. Represents the value at the input of ramp block, thus the actual frequency Freq. INV [47] (page 14) is reached after the time ramps reach the setpoint.	Hz
Voltage setpoint [786]	Voltage reference value.	V
$\begin{array}{lll} \hline \begin{array}{l} \text { Panel } \\ \text { [161] } \end{array} & \text { freq. } & \text { Setpoint } \\ \hline \end{array}$	Setpoint value from the panel, entered in the monitor window.	
Discrete setpoint [10]	Discrete setpoint value [60] (page 36).	
Up/down commands [977]	Output from the Up/Down commands [970] (page 38).	\%/s
Control word [77]	Control signals of the converter	
\square START	Control command for the motor operation mode (1-starts the motor).	
\square REVERZ F	Control command for the motor rotation direction (1-reverse operation mode).	
\square RESET PWM	Control command for the immediate voltage cut-off on the converter output (ac turns off PWM).	ctive
\square FAULT ACK.	Command for fault acknowledgement.	
\square ERR_MASTER	Master fault	
$\begin{array}{ll} \square & \text { COMPENSATION } \\ \text { DT } & \\ \hline \end{array}$	Turn on the dead time compensation mode	
\square SCALAR / VECTOR	0 - scalar control 1 - vector control.	
\square UNF BOARD TYPE	0 - UNF 400, 1 - UNF 230/400 M.	
\square RAMP_F_VSTUP0	Frequency ramp input reset.	
\square RAMP_F_VYSTUP0	Frequency ramp output reset.	
\square RAMP_F_FREEZE	Frequency ramp stop.	
\square QUICK_STOP	Quick emergency drive stop.	
\square REVERZ MOM.	Control command for changing the polarity of the torque setpoint.	
\square Reserve		
ON / OFF time [1577]	Represents the time in AUTO OFF mode to the next automatic start or stop of the inverter.	

4.2 Control

Group of parameters number [759]
Quantities affecting the converter control, values of important control and operating quantities.
MENU \ DIAGNOSTICS \CONTROL

Name [ID]	Description	Dim.
Freq. INV [47]	Frequency on the converter output. Represents the applied output voltage frequency behind the ramp block with all corrections taken into account.	Hz
Rpm [68]	Motor revolutions per minute. For correct displaying of this parameter, it is neccesary to set up Nom. revolutions [356] (page 30) correctly, according to the nameplate. This quantity is not affected by motor slip, it corresponds to the frequency setpoint.	RPM
Voltage [46]	Voltage of the DC link. In a steady-state, the voltage gains its value near 1.41 x supply voltage RMS, which corresponds with he nominal voltage of the converter. During the	V

Name [ID]	Description	Dim.
	braking, it can rise to the value of BM operating voltage [377] (page 45).	
Voltage [73]	Voltage on the motor terminals (load) is not exactly measured quantity, it is evaluated from PWM modulation index and DC link voltage (Voltage DC [46] (page 14)).	V
Current [42]	RMS value of the motor current (load).	A
Cos Phi [67]	Motor power factor. Positive values indicate motoric operation and negative values indicate regenerative motor operation.	
Torque [69]	Mechanical torque on the motor shaft. The value of torque is evaluated by the mathematical motor model; its accuracy is influenced mainly by the parameter Nom. revolutions [356] (page 30).	Nm
Modulation index [768]	PWM duty cycle of the switching power elements.	$\%$

4.2.1 Power and energy

Group of parameters number [486]

Diagnostic group of quantities dealing with the energy indicators (power, consumption, losses).
MENU \DIAGNOSTICS \CONTROL \POWER AND ENERGY

| Name [ID] | Description | Dim. |
| :--- | :--- | :--- | :--- |
| Input power [70] | Active motor input power of the motor without considering any losses. | W |
| Power [66] | Active motor power (load), evaluated from voltage, current and power factor of the
 motor. | W |
| kWh
 Consumption
 [429] | Number of consumed kWh. This value can be reset by the command Reset the
 consumption [897] (page 32). | kWh |
| MWh
 Consumption
 [430] | Number of consumed MWh. This value can be reset by the command Reset the
 consumption [897] (page 32). | MWh |
| Power restriction
 [1092] | Coefficient of power restriction from external effects.
 At maximal allowed power or current the value 1 is acquired and when power
 restriction is in effect, this value is decreased to 0. Individual conditions of the power
 restriction can be selected in Power restriction (PR) [766] (page 46). | |

4.2.2 Additional quantities

Group of parameters number [534]
Additional and derived quantities for special use.

MENU \DIAGNOSTICS \CONTROL \ADDITIONAL QUANTITIES

Name [ID]	Description	Dim.
Freq. INV ramp [487]	Frequency on the ramp block output. Represents the speed controller (SC) reference in the vector control mode.	Hz
Freq. INV abs. [472]	Frequency on the converter output in an absolute value.	Hz
Rpm behind the transmission [907]	Rotation speed behind the transmission. To display it correctly, it is necessary to correctly enter the parameter Transmission ratio [888] (page 30).	RPM
Max. current [494]	Motor current RMS value limitation on the converter output. During an excessive converter load, maximal current can drop from the value Max. mot. current [5] (page 44) to the value Permanent current [24] (page 31).	A
Fast current [49]	RMS value of the non filtered motor current (load).	A
Curr. phase U [1221]	U-phase current RMS value at the output of frequency converter.	A
Curr. phase V [1222]	V-phase current RMS value at the output of frequency converter.	A
Curr. phase [1223]	W-phase current RMS value at the output of frequency converter.	A
Sum of I-AC [831]	Filtrated absolute sum of AC currents for evaluation of leak or current measurement fault.	A
Mag. Flux [71]	Stator magnetic flux. If the load is different than AC motor, it is a fictional quantity.	Wb
UL1_rms [1519]	RMS value of L1 phase voltage. This voltage can represent supply or generated	V

Name [ID]	Description	Dim.
	grid voltage, according to connection.	
UL2_rms [1520]	RMS value of L2 phase voltage. This voltage can represent supply or generated grid voltage, according to connection.	V
UL3_rms [1521]	RMS value of L3 phase voltage. This voltage can represent supply or generated grid voltage, according to connection.	V
UL1_p2p_rms [1199]	RMS value of L1 phase-to-phase voltage. This voltage can represent supply or generated grid voltage, according to connection.	V
UL2_p2p_rms [1218]	RMS value of L2 phase-to-phase voltage. This voltage can represent supply or generated grid voltage, according to connection.	V
UL3_p2p_rms [1200]	RMS value of L3 phase-to-phase voltage. This voltage can represent supply or or generated grid voltage, according to connection.	V
RN reference [1170]		V
RN feedback [1190]		V

4.3 Inputs and outputs

Group of parameters number [859]
Diagnostics of the converter inputs and outputs.

4.3.1 BIN

Group of parameters number [1212]
MENU \DIAGNOSTICS \INPUTS AND OUTPUTS \BIN

Name [ID]	Description	Dim.
Binary inputs [184]	State of the binary inputs. Filled rectangle represents the BINx physical switch-on.	
\square BIN1	State of 1st binary input (Terminal 1).	
\square BIN2	State of 2nd binary input (Terminal 2).	
\square BIN3	State of 3rd binary input (Terminal 3).	
\square BIN4	State of 4th binary input (Terminal 4).	
\square BIN5	State of 5th binary input (Terminal 5).	
\square BIN6	State of 6th binary input (Terminal 6).	

4.3.2 AIN

Group of parameters number [82]
Diagnostic group of quantities for the analog inputs of the converter AIN1 to AIN4.
Parameters of the analog inputs can be configured in the parameter group [144] (page 48).

MENU \DIAGNOSTICS \INPUTS AND OUTPUTS \AIN

Name [ID]	Description	Dim.
$\left\lvert\, \begin{aligned} & \text { AIN1 } \\ & {[256]} \end{aligned}\right.$	Value of the signal brought to the analog input terminals $\mathrm{X} 1: 11$ and $-\mathrm{X} 1: 12$ in physical units. Using the parameter AIN1 Signal [251] (page 49) select the quantity that will be changed according to the analog input level change. Parameters of the analog input can be configured in the parameter group [147] (page 48).	V
$\begin{array}{\|l\|} \hline \text { AIN1 } \\ \text { Rel. } \\ {[41]} \\ \hline \end{array}$	Relative value of the signal connected to the analog input terminals $+\mathrm{X} 1: 11$ and $-\mathrm{X} 1: 12$. Parameters of the analog input can be configured in the parameter group [147] (page 48).	\%
$\begin{aligned} & \text { AIN2 } \\ & {[280]} \end{aligned}$	Value of the signal brought to the analog input terminals $\mathrm{X} 1: 13$ and $-\mathrm{X} 1: 14$ in physical units. Using the parameter AIN2 Signal [259] (page 50) select the quantity that will be changed according to the analog input level change. Parameters of the analog input can be configured in the parameter group [149] (page 49).	V
$\begin{aligned} & \hline \text { AIN2 } \\ & \text { Rel. } \\ & \text { [43] } \end{aligned}$	Relative value of the signal connected to the analog input terminals $+\mathrm{X} 1: 13$ and $-\mathrm{X} 1: 14$. Parameters of the analog input can be configured in the parameter group [149] (page 49).	\%
$\begin{aligned} & \text { AIN3 } \\ & {[281]} \end{aligned}$	Value of the signal brought to the analog input terminals X1:15 and - X1:16 in physical units. Using the parameter AIN3 Signal [269] (page 51) select the quantity that will be changed according to the analog input level change. Not available for the UNIFREM 400 M converters.	V

Name [ID]	Description	Dim.
	Parameters of the analog input can be configured in the parameter group [148] (page 50).	
$\begin{array}{\|l} \hline \text { AIN3 } \\ \text { Rel. } \\ \text { [44] } \end{array}$	Relative value of the signal connected to the analog input terminals $+\mathrm{X} 1: 15$ and $-\mathrm{X} 1: 16$. Not available for the UNIFREM 400 M converters. Parameters of the analog input can be configured in the parameter group [148] (page 50).	\%
$\left\lvert\, \begin{aligned} & \text { AIN4 } \\ & {[282]} \end{aligned}\right.$	Value of the signal brought to the analog input terminals $\mathrm{X} 1: 17$ and $-\mathrm{X} 1: 18$ in physical units. Using the parameter AIN4 Signal [275] (page 51) select the quantity that will be changed according to the analog input level change. Not available for the UNIFREM 400 M converters. Parameters of the analog input can be configured in the parameter group [152] (page 51).	
AIN4 Rel. [45]	Relative value of the signal connected to the analog input terminals $+\mathrm{X} 1: 17$ and $-\mathrm{X1:18}$. Not available for the UNIFREM 400 M converters. Parameters of the analog input can be configured in the parameter group [152] (page 51).	\%

4.3.3 RELAYS

Group of parameters number [217]
MENU \DIAGNOSTICS \INPUTS AND OUTPUTS \ RELAYS

Name [ID]	Description	Dim.
Relay [185]	Condition of the output relays. Filled rectangle represents the RELEx physical switch-on.	
\square RELAY1	Condition of the 1st output relay.	
\square RELAY2	Condition of the 2nd output relay.	
\square RELAY3	Condition of the 3rd output relay. Not available for the converters UNIFREM 400 M.	

4.3.4 AOUT

Group of parameters number [700]
Diagnostic group of quantities for the analog inputs of the converter AOUT1 to AOUT3.
MENU \DIAGNOSTICS \INPUTS AND OUTPUTS \AOUT

| Name
 [ID] | Description | Dim. |
| :--- | :--- | :--- | :--- |
| AO1 | Recalculated value of the signal on the analog input terminals X1:19 and X1:20 (X1:15 and
 X1:16 for UNIFREM 400 M). Using the parameter AO1 Signal [359] (page 55), select the
 quantity according to which the analog output level is changed.
 Parameters of the analog input can be configured in the parameter group [370] (page 54). | A |
| AO2 | Recalculated value of the signal on the analog input terminals X1:21 and X1:22 (X1:17 and
 X1:16 for UNIFREM 400 M). Using the parameter AO2 Signal [364] (page 55), select the
 quantity according to which the analog output level is changed.
 Parameters of the analog input can be configured in the parameter group [371] (page 55). | A |
| A02] | Recalculated signal value on the terminals of the analog output X1:23 and X1:24. Using the
 parameter AO3 Signal [365] (page 56), select the quantity according to which the analog
 output level is changed. Not available for the UNIFREM 400 M converters.
 Parameters of the analog input can be configured in the parameter group [372] (page 55). | A |
| [703] | | |

4.4 Functions

Group of parameters number [760]
Quantities regarding the remaining optional functions of the converter.

4.4.1 PLC function

Group of parameters number [1278]
Numerical and logical blocks output.
MENU \DIAGNOSTICS \FUNCTIONS \PLC FUNCTION

Name [ID]	Description	Dim.
Logical blocks	Logical operation outputs, first two LB are fast (they respond in 1ms), others are	
s8]	slower (10ms).	
\square LB1	LB1 status	
\square LB2	LB2 status	

UNIFREM VF v.2.41x

Name [ID]	Description
\square LB3	LB3 status
\square LB4	LB4 status
\square LB5	LB5 status
\square LB6	LB6 status
\square LB7	LB7 status
\square LB8	LB8 status

Numerical blocks

Group of parameters number [312]
Output of numerical blocks.
MENU \DIAGNOSTICS \FUNCTIONS \PLC FUNCTION \ NUMERICAL BLOCKS

Name [ID]	Description	Dim.
NB1 [1274]	Result of operation of the first numerical block.	
NB2 [1275]	Result of operation of the second numerical block.	
NB3 [1276]	Result of operation of the third numerical block.	
NB4 [1277]	Result of operation of the fourth numerical block.	

4.4.2 Limit switches

Group of parameters number [890]
States and tracks of the limit switches.
MENU \DIAGNOSTICS \FUNCTIONS \LIMIT SWITCHES

Name [ID]	Description	Dim.
LS [919]	Limit switch state.	
\square LS1	LS1 inactive/active.	
\square LS2	LS2 inactive/active.	
\square LS3	LS3 inactive/active.	
\square LS4	LS4 inactive/active.	m
\square Slows down F>0	Slow down in effect for positive frequency.	km
\square Slows down F<0	Slow down in effect for negative frequency.	km
LS1 Track [891]	Number of meters run during the activated limit switch function.	m
LS1 Track in km [929]	Number of kilometers run during the activated limit switch function.	km
LS2 Track [892]	Number of meters run during the activated limit switch function.	m
LS2 Track in km [930]	Number of kilometers run during the activated limit switch function.	
LS3 Track [893]	Number of meters run during the activated limit switch function.	km
LS3 Track in km [931]	Number of kilometers run during the activated limit switch function.	
LS4 Track [894]	Number of meters run during the activated limit switch function.	
LS4 Track in km [932]	Number of kilometers run during the activated limit switch function.	

4.4.3 Process controller

Group of parameters number [18]
Diagnostic group of the process controller quantities.
MENU \DIAGNOSTICS \FUNCTIONS \PROCESS CONTROLLER

Name [ID]	Description	Dim.
Setpoint PC [21]	Setpoint value of the process controller.	\%
Feedback PC $[409]$	Feedback value of the process controller. If the process controller is turned on and works correctly, the value is near the value Setpoint value [407] (page 68).	\%
Error PC [410]	Regulation error of the process controller. In steady-state, it should be close to 0.	\%
Output PC [64]	Action value (output) of the process controller.	
State PC [820]	Actual state of the process controller.	
\qquad	Process controller operates at lower saturation.	

UNIFREM VF v.2.41x

Name [ID]	Description ${ }^{\text {Dim. }}$.
$\begin{array}{\|ll} \hline & \text { Upper } \\ \text { saturation } \end{array}$	Process controller operates at upper saturation.
$\begin{aligned} & \text { Error in the } \\ & \text { dead-zone } \end{aligned}$	Process controller error in the dead-zone.
\square Positive error	Process controller error is positive.
\square SP achieved	If error is lower than hysteresis.
\square Parked	Process controller is parked.
\square PC Reset	Active PC RESET - integration term and the output are equal to the value PC Reset value [1131] (page 69).

4.4.4 Optimization

Group of parameters number [707]
Setting the parameters for the optimization block that is used to search for the extremum of any signal using the change of a selected entering setpoint signal.
Optimization searches for an output value, at which it reaches the criteria of the selected signal. During the optimization, if the measurement conditions and the operation condition are met, new output samples are counted in defined intervals. The found global extremum is stored to the memory. In case the optimization output should apply, it is necessary to select its output as the source of the setpoint value.

MENU \DIAGNOSTICS \FUNCTIONS \OPTIMIZATION

Name [ID]	Description	Dim.
$\begin{array}{ll} \text { OPT } & \text { Output } \\ {[423]} & \end{array}$	Output value of the optimization block. You can watch the status and quality of the optimization process here. 100% represents the min.-max. range from the setpoint channel, which is connected to the optimization block (see [65] (page 70)).	
Optimization step [742]	Optimization step represents the difference between two consecutive optimization algorithm samples. (see [65] (page 70)).	
OPT Starting point [708]	Defines the starting point of the optimization at the optimization start, when scanning is turned off.	
OPT State [709]	Shows the present state the optimization block.	
\square Reset	Optimization is in initial or blocked state.	
\square Measuring	Measuring of the optimized quantity is running.	
\square Scan	Scanning of the whole optimization output range is running.	
\square Tuning	State of fine tuning and searching for the optimization point.	

4.4.5 Ext. thermal protection

Group of parameters number [868]
Diagnostic group of quantities of the external thermal protection (ETP).
MENU \DIAGNOSTICS \FUNCTIONS \EXT. THERMAL PROTECTION

Name [ID]	Description	Dim.
ETP TTPmperature $[869]$	Temperature of the ETP sensor. After exceeding the temperature defined in the parameter ETP Warning [865] (page 73), the converter generates a warning. After exceeding the temperature defined in the parameter ETP Fault [866] (page 73), the converter generates the fault " E38-ETP temperature (page 28)".	
$\begin{array}{\|ll\|} \hline \text { ETP } & \text { Current } \\ {[870]} \end{array}$	Measuring current of the external thermal protection. By rule, it is selected as the signal source of an analog input, AOUT1 to AOUT3.	mA
$\begin{array}{\|ll\|} \hline \text { ETP } & \text { Voltage } \\ {[867]} & \\ \hline \end{array}$	Value of measured voltage drop on the ETP sensor.	V
$\begin{aligned} & \text { Sensor } \\ & \text { resistance } \\ & \text { [871] } \end{aligned}$	Resistance value of the ETP sensor. By multiple sensors connected to a series, it represents the average resistance value on one of them.	Ω

4.5 Converter state

Group of parameters number [761]
Quantities regarding the overall state of the converter and its components.

MENU \DIAGNOSTICS \CONVERTER STATE

UNIFREM VF v.2.41x

Name [ID]	Description	Dim.
Voltage 24V [72]	DC control voltage of 24 V . Option for the detection of the supply load caused by the control inputs and outputs. Converter generates the fault " E16-Supply overload (page 27)" when the voltage drops under 16 V .	yv
Battery voltage [773]	Voltage of the battery that backs up the history logs in the converter.	V
Converter operational [496] hours	Converter operational hours. Converter operation time when switched on (RUN). This value can be reset by authorized technicians only.	h
MT operational hours [497]	Motor operational hours. Converter operation time. This value can be reset by the command Reset the motor operation hours MT [1075] (page 31).	
Converter state [76]	Status word of the converter.	
\square Fault	Converter is in fault.	
\square SW Err_Pin	System, internal converter status.	
\square Run	Converter generates voltage on the outputs.	
\square DC charged	DC link is charged.	
\square MT excited	Motor is excited.	
\square Accel./Decel. F	Inactive - motor accelerates, active - motor decelerates.	
$\square \mathrm{Fsp}>0$	Active - forward (+), inactive - backward (-). It is the polarity of the setpoint freque	ency.
$\square \mathrm{F}=\mathrm{Fsp}$	When active, the setpoint frequency is achieved.	
Warning	Warning or functional message occurred in the converter.	
\square Active	Always active. It can be used as logical 1.	
\square Deexciting MT	Motor is still excited, the start is blocked.	
\square Ready	Converter is ready for the start command. (READY).	
\square Mechanical brake	Mechanical brake relay control. Brake is released when active.	
\square Motor/generator	Active - regenerative operation mode, inactive - motoric operation mode.	
- Frot > 0	Rotor frequency polarity. If IRC is not available, then it represents the sign of frequency evaluated by the mathematical model.	
Status word negated [547]	Negated status word.	
Look choises of parameter's Converter state [76] (page 20)		
Warning [250]	State of individual warnings.	
Warning2 [424]	State of individual warnings.	
Fault [781]	State of individual faults.	
Fault2 [780]	State of individual faults.	

4.6 Thermal protections

Group of parameters number [485]
Diagnostic group of quantities regarding the thermal protections and overloads.

MENU \DIAGNOSTICS \THERMAL PROTECTIONS

Name [ID]	Description Dim.
Cooler temperature [74]	Temperature of the power elements cooler. Converter generates a warning " W6Cooler temperature (page 24)" after exceeding the temperature set by Cooler temperature warning [767] (page 77). Converter generates the fault " E1-Cooler temperature (page 27)" after exceeding the temperature set by service parameter. "Cooler temp. fault". If the temperature falls below minimal limit of sensor, this value is inaccessible. If the cooler temperature drops under the minimal measuring range, the displayed value is inaccessible.
$\begin{aligned} & \text { CB } \\ & \text { temperature } \\ & {[75]} \end{aligned}$	Control board (CB) temperature. When the temperature exceeds the parameter CB temperature warning [204] (page 77) converter generates a warning " W7-CB temperature (page 24)". After exceeding the critical temperature set by service parameter "CB temper. fault" converter generates the fault " E22-CB temperature ${ }^{\circ} \mathrm{C}$ (page 27)". If the temperature falls below minimal limit of sensor, this value is inaccessible. If the temperature drops under the minimal limit of the measurement channel, the

UNIFREM VF v.2.41x

Name [ID]	Description	Dim.	
	displayed value is inaccessible.		
Thermal integral [31]	INV	Warming rate of the converter. The fault " E8-Converter overload (page 27)" is generated after exceeding 100\% by this value.	$\%$
Thermal integral [1219]	INV	Time remaining until the end of fault " E8-Converter overload (page 27)".	s
Thermal integral [33]	MT	Motor warming rate, the " E29-Motor overload (page 28)" fault occurs after exceeding 100\%.	$\%$
Thermal integral [1220]	MT	Time remaining until the end of fault " E29-Motor overload (page 28)".	s

4.7 Communication

Group of parameters number [219]
Information regarding serial communications MODBUS, PROFIBUS, RS485, CAN.

4.7.1 MODBUS

Group of parameters number [661]
MODBUS protocol diagnostics on the RS 485 and USB ports.
MENU \DIAGNOSTICS \COMMUNICATION \MODBUS

Name [ID]	Description	Dim.
Modbus value [934] setpoint	Setpoint value from the Modbus protocol.	\%
SW_MODBUS [935]	State word sent over the Modbus communication. For a more detailed description, see the documentation for MODBUS communication protocol.	
Look choises of parameter's SW_PB [804] (page 22)		
CW_MODBUS [936]	Command Word sent by the Modbus master. For a more detailed description, see the documentation for MODBUS communication protocol.	
Look choises of parameter's CW_PB [805] (page 22)		
Last Addr. [662]	Last received address of the device.	hex
Last Func. [663]	Last received function (may also be another device).	hex
Last register [741]	Last received register (only for this device, it is shown first if there is access to multiple registers).	hex
Last result [664]	Result of the last received function determined for this device.	hex
Last length [665]	Size (in bytes) of the last received frame over MODBUS.	
Last CRC [666]	Last received CRC (it can also be a frame for another device)	hex
Message count [740]	Count of all received messages, including error messages.	hex
CRC $[668]$ error count	Count of all received CRC error count messages.	hex
Exception count [800]	Number of messages, which are responded by the error messages.	hex
Slave count [801]	Count of received messages with a valid device address.	hex
No response [802]	Count of received messages with a valid device address, when the device did not respond.	hex

4.7.2 PROFIBUS

Group of parameters number [817]
PROFIBUS diagnostics.
MENU \DIAGNOSTICS \COMMUNICATION \PROFIBUS

Name [ID]	Description	Dim.
Profibus setpoint	Setpoint value received over the Profibus protocol.	$\%$

UNIFREM VF v.2.41x

Name [ID]	Description	Dim.
value [809]		
SW_PB [804]	Status word sent over the Profibus communication. For a more detailed description, see the documentation for Profibus Extension Module.	
```OReady To Switch```	Convert Reset, Quick stop are inactive, no faults or initialization are present.	
$\square$ Ready To Operate	Converter is ready for the start command.	
$\square$ Operation Enabled	Converter generates voltage on the outputs.	
$\square$ Fault Present	Converter is in fault.	
$\square$ No OFF 2	Inactive - Reset is active, outputs of the converter are blocked, active - Reset is not active.	
$\square$ No OFF 3	Inactive - Quick stop is active, active - Quick stop is inactive.	
$\begin{array}{\|cc\|} \hline \begin{array}{c} \text { Switching } \\ \text { Inhibited } \end{array} & \text { On } \\ \hline \end{array}$	Reset or Quick stop are active, or an initialization or fault are present.	
$\square$ Warning Present	Warning or functional message occurred in the converter.	
$\square$ Speed Error within tolerance	When active, the setpoint frequency is achieved.	
$\square$ Control Requested	Inactive - converter does not accept Control Word over communication. Acitve converter is controlled by Control Word received over communication.	
$\square$ F or n Reached	When active, the setpoint frequency is achieved.	
$\square$ Run	Converter generates voltage on the outputs.	
$\square$ Set b0	Bit 0 of active set binary combination.	
$\square$ Set b1	Bit 1 of active set binary combination.	
$\square$ LB3	Status of logical block 3.	
$\square$ LB4	Status of logical block 4.	
CW_PB [805]	Command word sent by the Profibus master. For a more detailed description, see the documentation for Profibus Extension Module.	
$\square \mathrm{ON}$	Converter is ready to accept the START command.	
$\square$ No OFF 2	Inactive - Reset is active, Active - normal converter operation.	
$\square$ No OFF 3	Inactive - Quick stop is active, active - normal converter operation.	
$\square$ Enable Operation	Start. Converter starts generating voltage on its output terminals.	
$\begin{array}{\|l\|} \hline \text { Enable } \quad \text { Ramp } \\ \text { Generator } \end{array}$	Inactive - ramp input is set to zero, active - normal operation of the ramp input block.	
$\square$ Unfreeze Ramp	Inactive - ramp output is frozen, active - ramp is operating normally.	
$\square$ Enable Setpoint	Inactive - ramp input is set to zero, active - normal operation of the ramp input block.	
$\square$ Fault Acknowledge	Fault acknowledgement (only transition inactive-active). Fault acknowledgement has to be allowed in Fault acknowledgement source [165] (page 75).	
$\square$ Bit 8	Unused	
$\square$ Bit 9	Unused	
$\square$ Control by PLC	Inactive - converter does not accept Control Word. Active - converter is controlled by Control Word.	
$\square$ Bit 11	Unused	
$\square$ Bit 12	Unused	
$\square$ Bit 13	Unused	
$\square$ Bit 14	Unused	
$\square$ Bit 15	Unused	
PB-MASTER Error   [819]	Number of communication errors between the Profibus module and the Profibus master.	
PB-INV Error [818]	Number of communication errors between the converter and the Profibus module.	hex

### 4.7.3 RS LINKS

Group of parameters number [228]
Serial lines diagnostics.
MENU \DIAGNOSTICS $\backslash C O M M U N I C A T I O N \backslash R S ~ L I N K S$

Name [ID]	Description	Dim.

UNIFREM VF v.2.41x

Name [ID]	Description	Dim.
FRAME_ERR_USB [232]	USB wrongly received data count. (wrong parity, wrong stop bit,...)	
FRAME_ERR_RS485 [229]	RS 485 wrongly received data count. (wrong parity, wrong stop bit,,   $\ldots$.	
FRAME_ERR_EXT_MODUL   [233]	RS external module wrongly received data count. (wrong parity,   wrong stop bit,...)	

### 4.8 SW and HW version

Group of parameters number [762]
Information about the converter and its components (Mostly static information).
MENU \DIAGNOSTICS \SW AND HW VERSION

Name [ID]	Description	Dim.
UNIFREM VF SW version [379]	UNIFREM VF converter SW version.	
Serial number [35]	First part of the converter unique serial number.	hex
Serial number 2 [36]	Second part of the converter unique serial number.	hex
Parameter date [380]	Parameter generating date.	
Parameter time [381]	Parameter generating time.	

### 4.9 Date and Time

Group of parameters number [1213]
MENU \DIAGNOSTICS \DATE AND TIME

Name [ID]	Description	Dim.
Date [210]	Current date.	
Time [209]	Current time.	
Day [1046]	Current day.	
$\square$ Monday $\mid \square$ Tuesday	$\square$ Wednesday $\mid \square$ Thursday $\mid \square$ Friday $\mid \square$ Saturday $\mid \square$ Sunday	
Trial period [1006]	Number of days until the trial period of the converter expires.	d

## 5 WARNINGS

A sample disley	Description
F1-PWM Reset	Converter outputs are blocked. RESET sources can be a binary input or any signal (see Reset source [704] (page 33)).
W2-DC charging	If this warning is present longer than 30 seconds after the converter start, the charging relay probably did not switch, which can be caused by incorrect supply parameters, or damaged charging circuit of the converter. For the duration of the warning, the value of Voltage DC [46] (page 14) is displayed in FAULTS window.
W3-System problem	Software problem occurred. Please, contact the service.
W4-24V Overload	24 V power supply voltage dropped under 22 V .24 V supply is probably overloaded. For the duration of the warning, the value of Voltage 24 V [72] (page 20) is displayed in FAULTS window.
F5-Power restriction	Power restriction after reaching critical temperature or an overload status. Power restriction function is configured in the parameter Power restriction (PR) [766] (page $46)$. For the duration of the warning, the value of Power restriction [1092] (page 15) is displayed in FAULTS window.
W6-Cooler temperature	High cooler temperature. Cooler temperature Cooler temperature [74] (page 20) exceeded the value defined by the parameter Cooler temperature warning [767] (page 77). If the automatic power restriction Power restriction (PR) [766] (page 46) function is turned on, the converter can restrict power. Life cycle of the device decreases when the device is overheated excessively and very often. For the duration of the warning, the value of Cooler temperature [74] (page 20) is displayed in FAULTS window.
W7-CB temperature	Igh temperature of control board. CB temperature CB temperature [75] (page 20) exceeded value of parameter CB temperature warning [204] (page 77). Life cycle of the device decreases when the device is overheated excessively and very often. For the duration of the warning, the value of CB temperature [75] (page 20) is displayed in FAULTS window.
W8-DC Undervoltage	Low voltage of the DC link. The value Voltage DC [46] (page 14) dropped under the fault limit DC Undervoltage - control and evaluation of other faults is blocked. For the duration of the warning, the value of Voltage DC [46] (page 14) is displayed in FAULTS window.
W9- PWM saturation	Converter reached maximum voltage on the output. At actual voltage value of the DC link, duty cycle of the PWM modulation is at maximum and the current controllers are saturated. Quality of the regulation decreases. For the duration of the warning, the value of Modulation index [768] (page 15) is displayed in FAULTS window.
W10-INV Overload	Converter is overloaded - converter integral Thermal integral INV [31] (page 21) exceeded the $90 \%$ value and the fault " E8-Converter overload (page 27)" can occur shortly, after which the converter is blocked for a longer time! If the automatic power restriction Power restriction (PR) [766] (page 46) function is turned on, the converter may restrict power. For the duration of the warning, the value of Thermal integral INV [31] (page 21) is displayed in FAULTS window.
W11-Fan error	Fans on the converter cooler are damaged or clogged by debris. If the problem is not eliminated, converter overheating and other faults and warnings can occur.
W12-Replace battery	Voltage of the 3 V battery of the control card dropped under the 2.7 V value. If the battery is not replaced, loss of settings and saved history settings is impending. For the duration of the warning, the value of Battery voltage [773] (page 20) is displayed in FAULTS window.
W13-External temperature	Cooler temperature ETP Temperature [869] (page 19) exceeded the value defined by the parameter ETP Warning [865] (page 73). For the duration of the warning, the value of ETP Temperature [869] (page 19) is displayed in FAULTS window.
W14-IGBT Overheating	Power module is thermally overloaded. Converter operates at high current on high switching frequency. For the duration of the warning, the value of the maximal IGBT current is displayed in FAULTS window.
W15-Set date and time	Date and time have not been set.
W16Uncommissioned	The converter has not been fully commissioned yet.

UNIFREM VF v.2.41x

A sample disley	Description
converter	
W17-MT Overload	Motor is overloaded - converter integral Thermal integral MT [33] (page 21) exceeded the $90 \%$ value and the fault " E29-Motor overload (page 28)" can occur shortly, after which the converter is blocked for a longer time! For the duration of the warning, the value of Thermal integral MT [33] (page 21) is displayed in FAULTS window.
F18-Flux braking	Flux braking function is active, the motor operates at a higher magnetic flux and part of the braking energy is converter to motor heat. For the duration of the warning, the value of Mag. Flux [71] (page 15) is displayed in FAULTS window. Flux braking can be configured in [774] (page 46).
F19-Mechanical brake	Frequency setpoint is held on the brake frequency Brake frequency [522] (page 72) value, until the delay period and brake reaction Brake delay [519] (page 72) or the brake advance time Brake advance [521] (page 72) expire. For the duration of the warning, the value of Brake frequency [522] (page 72) is displayed in FAULTS window.
F20-BM braking	Brake module was activated. Excessive energy is fed to brake resistor, which is converted to heat. More information in the description of [376] (page 45). For the duration of the warning, the value of Voltage DC [46] (page 14) is displayed in FAULTS window.
W21-MT deexcitation	Waiting for the motor field deexcitation after the voltage disconnection. Until the motor is deexcited, start is not possible. Deexcitation period of the motor can be set by the parameter Time constant MT [79] (page 30). For the duration of the warning, the value of Mag. Flux [71] (page 15) is displayed in FAULTS window.
F22-Current limit	Current limit takes up. Current reached the value given by the parameter Max. mot. current [5] (page 44) or Max. regen. current [549] (page 45) and the output frequency along with the voltage is restricted. Motor is accelerating in the regenerative operation and decelerating in the motoric operation. For the duration of the warning, the value of Current [42] (page 15) is displayed in FAULTS window.
W23-Reserved	
W24-Reserved	
W25-Max. voltage	Current controller saturation. Converter is not able to generate more voltage on the output. Upper limit of generated voltage is defined by the parameter Max. voltage [495] (page 43). For the duration of the warning, the value of Voltage MT [73] (page 15) is displayed in FAULTS window.
W26-Reserved	
W27-Reserved	
W28-Reserved	
F29-Field weakening	Motor operates in the field weakening zone, to achieve higher frequencies. Motor torque decreases in this mode in reciprocal proportion to the rotation speed. For the duration of the warning, the value of Mag. Flux [71] (page 15) is displayed in FAULTS window.
W30-Reserved	
W31-Reserved	
W32-Reserved	
W33-Quick STOP	Emergency STOP was activated, after which the START is blocked. Converter will unblock after cancelling the START command with an inactive safety (quick) STOP.
F34-Quick reverse	Accelerated ramp-down Quick reverse is applied on the opposite polarity of the frequency setpoint and the ramp output. For the duration of the warning, the value of Quick reverse [807] (page 42) is displayed in FAULTS window.
W35-PC Parking	Process controller conditions to park the converter were met. For the duration of the warning, the value of Error PC [410] (page 18) is displayed in FAULTS window.
W36-Reserved	Reserved
W37-Reserved	Reserved
W38-Motor disconnected	Motor current is too low. The motor is probably not connected or the motor parameters do not match the connected motor. For the duration of the warning, the value of Current [42] (page 15) is displayed in FAULTS window.
W39-Reserved	Reserved
W40-Reserved	Reserved
W41-Profibus	Profibus master does not communicate with the Profibus module, or the Profibus


A sample disley	Description
Timeout	module does not communicate with the converter for a defined period of time PB   Warning timeout [815] (page 81).
W42-Modbus	Modbus master does not communicate with the converter for a defined period of time   MB Warning timeout [962] (page 79).   Timeout
F43-Limit switch 1	Limit switch 1 is swithed. Configuration is possible in the group [876] (page 65).
F44-Limit switch 2	Limit switch 2 is switched. Configuration is possible in the group [877] (page 66).
F45-Limit switch 3	Limit switch 3 is switched. Configuration is possible in the group [878] (page 66).
F46-Limit switch 4	Limit switch 4 is switched. Configuration is possible in the group [879] (page 67).
F47-Set switching	Switching to another set is activated. If the message persists, it is not possible to   switch the sets (Some parameters can only be changed during stop). For the duration   of the warning, the value of [222] (page 83) is displayed in FAULTS window.
F48-Restore point	Restore point for restoring the converter settings is being created.
W49-External   warning	External warning signal is active. Source of the warning is configured in the parameter   Ext. warning signal [965] (page 77).
W50-CPU Overload	Excessive overload of the converter control processor. Control quality decreases   when this warning occurs. It is recommended to decrease the converter switching   frequency Switching frequency [6] (page 31). For the duration of the warning, the   value of load of the 10ms interrupt is displayed in FAULTS window.
F51-Initialization	During the initialization Initialization time [1154] (page 32) the converter ignores   control commands. It is used for slower superior systems.
W52-Brake   frequency	Frequency setpoint Freq. setpoint [162] (page 14) is less than Brake frequency [522]   (page 72). For the duration of the warning, the value of Brake frequency [522] (page
72) is displayed in FAULTS window.	

## 6 ERRORS

A sample disley	Description
E1-Cooler   temperature	Cooler temperature exceeded the allowed limit of temperature. It is necessary to   increase the cooling efficiency. For the duration of the fault, the value of Cooler   temperature [74] (page 20) is displayed in FAULTS window.
E2-Output phase	
outage	Converter evaluated the output current asymmetry, which can be caused by interrupting   the output phase or damaged connected device. Fault can be turned off in the parameter   Output phase loss [338] (page 74).
E3-Reserved	Reserved.
E4-Overvoltage	Voltage in DC link exceeded the maximal allowed value, which is factory preset. For the   duration of the fault, the value of Voltage DC [46] (page 14) is displayed in FAULTS   window.
E5-Undervoltage	Voltage in DC link dropped under the minimal allowed value, which is factory preset. For   the duration of the fault, the value of Voltage DC [46] (page 14) is displayed in FAULTS   window.
E6-Watchdog	Fault caused by suspending or stopping of the control firmware in the DSP or during the   debugging process.
EWM	


A sample disley	Description
module interference	strong electromagnetic interference from surrounding devices. Test of this fault can be turned off in service parameters.
E25-Interrupted AIN1	For the defined AIN Type 2 to $10 \mathrm{~V}(4$ to 20 mA ) the AIN1 value dropped under the 1 V resp. 2 mA limit. Indicates the analog input interruption or a control board electronics fault. For the duration of the fault, the value of AIN1 [256] (page 16) is displayed in FAULTS window.
E26-Interrupted AIN2	For the defined AIN Type 2 to $10 \mathrm{~V}(4$ to 20 mA ) the AIN2 value dropped under the 1 V resp. 2 mA limit. Indicates the analog input interruption or a control board electronics fault. For the duration of the fault, the value of AIN2 [280] (page 16) is displayed in FAULTS window.
E27-Interrupted AIN3	For the defined AIN Type 2 to 10 V ( 4 to 20 mA ) the AIN3 value dropped under the 1 V resp. 2 mA limit. Indicates the analog input interruption or a control board electronics fault. For the duration of the fault, the value of AIN3 [281] (page 16) is displayed in FAULTS window.
E28-Interrupted AIN4	For the defined AIN Type 2 to 10 V ( 4 to 20 mA ) the AIN4 value dropped under the 1 V resp. 2 mA limit. Indicates the analog input interruption or a control board electronics fault. For the duration of the fault, the value of AIN4 [282] (page 17) is displayed in FAULTS window.
E29-Motor overload	Excessive thermal overload of the motor. High temperature of the motor evaluation method is set by the parameter Motor overloading [27] (page 74). Actual status of the motor temperature integral is in Thermal integral MT [33] (page 21). For the duration of the fault, the value of Thermal integral MT [33] (page 21) is displayed in FAULTS window.
E30-Current leak/Sum I	Current leak in the output (motor) cable or HW failure of the control board - current measurement fault. It is recommended to measure leaks in the output cable. It is possible that the control board is impure by conductive impurities. Please, contact VONSCH company. For the duration of the fault, the value of Thermal integral MT [33] (page 21) is displayed in FAULTS window.
E31-Too many faults	More faults occurred that specified by the parameter Max. fault count [431] (page 76) in a time period shorter than Min. fault period [432] (page 76). For the duration of the fault, the value of number of faults is displayed in FAULTS window.
E32-IRC fault	Incremental encoder fault.
E33-Reserved	Reserved
E34-Reserved	Reserved
E35-Reserved	Reserved
E36-FLASH error	Data could not be written into the FLASH memory. The converter control board might be damaged.
E37-Profibus Timeout	Profibus master does not communicate with the Profibus module, or the Profibus module does not communicate with the converter for a defined period of time PB Fault timeout [814] (page 81).
E38-ETP temperature	Temperature on the external temperature sensor ETP Temperature [869] (page 19) exceeded the value defined by the parameter ETP Fault [866] (page 73). For the duration of the fault, the value of ETP Temperature [869] (page 19) is displayed in FAULTS window.
E39-Settings	Converter configuration was not valid (long or improper storage of the converter on incorrect write to the RAM memory), so the parameters were restored from the automatic backup. For the duration of the fault, the date of the last automatic setting backup is displayed in FAULTS window.
E40-Blocked converter.	Converter is blocked, or has invalid settings. If possible, use the restore point to restore settings, otherwise call the VONSCH service.
E41-Reserved	reserved
E42-Modbus Timeout	Modbus master does not communicate with the converter longer than defined period of time MB Fault timeout [659] (page 79). For the duration of the fault, the value of Slave count [801] (page 21) is displayed in FAULTS window.
E43-Reserved	Reserved
E44-Reserved	Reserved
E45-Reserved	Reserved
E46-Reserved	Reserved


A sample disley	Description
E47-BM blocking	Blocking the switching pulses of BM from the source BM blocking [1204] (page 45). This   fault can be turned off by parameter BM blocking fault [1205] (page 45).
E48-Reserved	Reserved
E49-IGBT Module   overheating	IGBT is operated at very low voltage Vdc, high frequency of PWM switching or at   currents that are not approved by the manufacturer IGBT module. Dor the duration of   this fault, the value of the maximum IGBT current is displayed in FAULTS window.
E50-Reserved	reserved
E51-Reserved	reserved
E52-End of the   trial period.	The trial period has expired. The motor operation is locked, please contact the supplier   of frequency converter or device in which the converter is used, and ask for the   conditions for termination of trial operation.
E53-Reserved	reserved
E54-Reserved	reserved
E55-Rectifier fault   (VDC)	High value of first or second harmonic in the DC bus voltage.

## 7 SETTINGS

Group of parameters number [722]
Settings of the converter parameters, load, management, control, and other components and functions of the frequency converter.

### 7.1 LOAD (MOTOR)

Group of parameters number [58]
Settings of the parameters of the connected motor or other three-phase appliance on the power terminals of the frequency converter ( $\mathrm{U}, \mathrm{V}, \mathrm{W}, \mathrm{PE}$ ).

MENU \SETTINGS \LOAD (MOTOR)

Name [ID]	Description	Def
Nom. power [357]	Nominal power of the connected device (motor, transformer...).	1100
$10 \mathrm{~W} \div 1.5 \mathrm{E} 6 \mathrm{~W}$	If the nameplate parameters are not known, it is possible to calculate the approximate power from the nominal current and voltage.	
Nom. voltage [59]	Nominal voltage of the connected device (motor, transformer...).	
$1.0 \mathrm{~V} \div 1000.0 \mathrm{~V}$	During the installation, it is neccesary to check whether the load (motor) connection delta/wye voltage corresponds to this value.	
Nom. frequency [4]	Nominal frequency of the connected device (motor, transformer. ).	50.00 Hz
$1.00 \mathrm{~Hz} \div 3000.00 \mathrm{~Hz}$	In the V/F control mode, this parameter determines the frequency at which the V/f voltage curve reaches the value of End voltage [94] (page 40). Along with these parameters determines the V/f curve voltage and frequency ratio - motor magnetic flux	
Nom. current [151]	Nominal current of the connected device (motor, transformer....).	2.80 A
$0.01 \mathrm{~A} \div 4000.00 \mathrm{~A}$	Thermal protection of the motor (load) uses this parameter to determine the maximum allowable current for continuous operation.	
$\begin{array}{\|ll\|} \hline \begin{array}{l} \text { Nom. } \\ \text { [356] } \end{array} & \text { revolutions } \\ \hline \end{array}$	Nominal motor revolutions per minute, read from the nameplate or catalog ${ }_{\text {rpm }}^{1450}$data.	
$100 \mathrm{rpm} \div 2 \mathrm{E} 6 \mathrm{rpm}$		
Transmission ratio [888]	Transmission ratio. Rotation speed ratio before and after the	. 00
$\begin{aligned} & 0.00100 \\ & 10000.00000 \end{aligned}$	Serves for displaying the value of Rpm behind the transmission [907] (page 15) and proper operation of the limit switch functions [875] (page 65). It is also necessary to set Transmission ratio [888] (page 30).	
Wheel circumference   [889]	It represents the circumference of the wheel behind the transmission. Also serves for displaying the position value and proper operation of the limit 1.0000 switch functions [875] (page 65). At the same time it is also necessary to setm Transmission ratio [888] (page 30).	
$\begin{aligned} & 0.0001 \mathrm{~m} \div 100.0000 \\ & \mathrm{~m} \\ & \hline \end{aligned}$		
Output   phase sequence [326]	Setting the order of the phases on the output of the frequency converter. It replaces the physical exchange of the motor phases if it is necessary to achieve that when the motor should run in the forward direction (REVERSE inactive) it rotates in the opposite direction.   It is used to set the desired direction of rotation of the connected motor or change the order of the phases on the connected device. In the singlephase PWM output mode, which is set in PWM Output [798] (page 31), it has no effect.	Direct
Direct	Voltage is generated in the U-V-W order.	
Inverted	Voltage is generated in the V-U-W order.	
Time [79] $\quad$ constant $\quad$ MT	Time constant of the motor excitation.	0.120 s
$0.001 \mathrm{~s} \div 10.000 \mathrm{~s}$	This parameter influences the motor excitation speed and is necessary for the correct function of the motor mathematical model.	

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
MT deexcitation time   [1171]	Motor deexcitation time after PWM turning off.	
$0.00 \div 10.00$	Represents multiple of Time constant MT [79] (page 30) parameter value, during   which PWM outputs are blocked after previous PWM turning off.	
Reset the motor   operation hours MT   [1075]	This command resets the operation hours of the motor MT operational hours   [497] (page 20).	
Set motohours MT   [502]	By changing this parameter, it is possible to preset operation hours of the   motor MT operational hours [497] (page 20).	0.0 h
$0.0 \mathrm{~h} \div 200000.0 \mathrm{~h}$		

### 7.2 CONVERTER PARAMETERS

Group of parameters number [197]
Operating parameters of the converter.

### 7.2.1 APPLICATION MACROS

Group of parameters number [1491]
Application macros. It configures the converter parameters for the most used applications.

MENU \SETTINGS \CONVERTER PARAMETERS \APPLICATION MACROS

Name [ID]	Description	Def.
Motor   [1492] 50 Hz	Application macro for 50 Hz induction motor control.	
Artificial  AC   mains 50 Hz   [1495]	Application macro fo artificial AC mains 50 Hz .	
Artificial  AC   mains 60 Hz   $[1493]$	Application macro fo artificial AC mains 60 Hz .	
Artificial AC   mains   phase [1494]	Application macro for single phase artificial AC mains.	
PWM   [798]$\quad$ Output	Setting the converter output type and the PWM generation type.	3-phase AC
3-phase AC	Converter output for 3-phase loads of the motor type with the PWM metho Vector or SINE. Suitable for motors and generators.	thod - Space
1-phase AC sine	Converter output for 1-phase loads with the PWM-SINE modulation ty magnets, transformers, single phase motors...).	pe. (e.g. DC
1-phase DC	Converter output for (single-phase) DC loads such as DC magnets or DC mo	otors.
2-phase AC $90^{\circ}$	Converter output for two-phase high-frequency spindles.	
1-phase AC square HF -	Converter output for single-phase loads with square type modulation, su transformers.	able for HF
1-phase AC HFsquare II.	Converter output for single-phase loads with square type modulation, su transformers. Type II. High impedance in non active PWM output	able for HF
Switching frequency [6]	Switching frequency of the PWM modulation of output voltages.	10000 Hz
$575 \div 20000$	Switching frequency of the impulses of the converter power elements. For de value of acoustic noise, it is possible to increase this value. However, the th will increase and the maximum current of the converter might decrease.	ecreasing the hermal losses
Permanent current [24]	The current threshold for a long-term (permanent) converter load. The value represents the ratio between permanent current and the nominal current of the converter.	1.000
$0.500 \div\left(I_{N Q} / I_{N K}\right)^{5}$	If output current exceeds this value, the converter can generate the fault " overload (page 27)". Changing the nature of the converter load in the Op [23] (page 32) parameter resets the parameter value to the production specified load type and the specified converter type. By setting this value to	E8-Converter peration mode value for the to higher than

UNIFREM VF v.2.41x

Name [ID]	Description ${ }^{\text {def. }}$
	factory setting, it allows converter to feed permanently higher current, but it decreases short-term overload factor.   ${ }^{5}$ The value depends on the inverter power line. See installation manual.
$\begin{aligned} & \text { Operation mode } \\ & {[23]} \end{aligned}$	Selection of the converter load operation mode. Threshold current forlVariable specific operation modes is factory preset.
Constant load	Loading mode for dynamically varying loads, which have constant character of the torque to the motor frequency. The drive allows higher short-term overload and lower permanent load. For example: cranes, mills, conveyors, machines...
Variable load	Loading mode for static loads, which have an exponentially growing character of the torque to the motor frequency. The converter allows lower short-term overload and a higher permanent load. For example : Pumps, Fans, Generators, ..
$\begin{aligned} & \text { Initialization } \\ & {[1154]} \end{aligned}$	This time extends the initialization time. During the initialization time, start is not possible and the faults are not evaluated. Parameter serves for delaying 0 s the response time for slower control systems.
$0 \mathrm{~s} \div 3600 \mathrm{~s}$	
Password [548]	Setting the user password for access to the device settings. Password $\left.\right\|_{* * * *}$ needs to be entered when entering the converter settings.
*******	Protects the converter settings against reconfiguration by unauthorized persons.
DST Time shift [770]	Determines whether the time of the converter is only in the normal time, or it DST is changed when needed to normal or daylight saving time.
No DST \| DST automatic change	
Converter unblocking [1007]	Parameter for entering the password to unlock the converter from the trial period mode to operation mode. For unblocking the converter, please ${ }_{\text {**** }}$ contact the supplier of frequency converter or device in which the converter is used, and ask for the conditions for termination of trial operation.
****	
Sine filter (SF)   $[237]$	Presence of sine filter at the converters output. Not present
Not present	SF is not connected to the converter outputs.
Present	SF is connected to the converter outputs, the lower limit of switching frequency is increased and the dynamics of controllers in vector control mode is reduced.

### 7.2.2 ENERGY CONS.

Group of parameters number [236]
Preset or reset of the consumed energy counters kWh Consumption [429] (page 15) a MWh Consumption [430] (page 15).

MENU \SETTINGS \CONVERTER PARAMETERS \ENERGY CONS

Name [ID]	Description	Def.
Reset the consumption [897]	This command resets the counters of consumed energy.	
Consumption reset source [900]	Special reset source of the consumed converter energy.	
Look choises of parameter's Bit1 DS mask [553] (page 38)		

### 7.3 COMMANDS

Group of parameters number [1]
Command settings for converter and motor

### 7.3.1 COMMAND MACROS

Group of parameters number [1503]
Command macros for quick configuration of converter commands.

MENU \SETTINGS \COMMANDS \COMMAND MACROS

Name [ID]	Description	Def.
Control   $[1504]$	Command macro for command over the UNIPANEL control panel.	

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
Binary [1505]	Command macro for command over the binary inputs. This is a basic preset, it   should be adjusted manually.	

### 7.3.2 START STOP RESET

Group of parameters number [192]
MENU \ SETTINGS \COMMANDS \START STOP RESET

Name [ID]	Description	Def.
$\begin{array}{\|ll} \hline \text { Start } & \text { source } \\ \text { [194] } \end{array}$	Setting the converter start source. The START command generates the desired voltage and frequency on the $\mathrm{U}, \mathrm{V}, \mathrm{W}$ outputs (or $\mathrm{U}, \mathrm{V}$ for a single phase load).	BIN1
Control p	Pressing the green START button on the control panel causes the converter to start. The start is canceled by pressing the red STOP button.	
Permanent start	The converter starts immediately after the switch-on.	
BIN1	The converter start after the activation of the 1st binary input.	
BIN2	The converter starts after the activation of the 2nd binary input.	
BIN3	The converter starts after the activation of the 3rd binary input.	
BIN1, 2	The converter starts after the activation of the 1st or 2nd binary input.	
BIN1, 3	The converter starts after the activation of the 1st or 3rd binary input.	
BIN1, 4	The converter starts after the activation of the 1st or 4th binary input.	
MODBUS	The converter start is controlled over the serial communication. See the MODBUS serial communication protocol.	
PROFIBUS	The converter start is controlled over the serial communication. See the PROFIBUS serial communication protocol.	
Special	The converter start is controlled by a special preset signal and switching thresholds, see [987] (page 34).	
MODBUS 2	The converter start is controlled over the serial communication. See the MODBUS seria communication protocol.	
$\begin{aligned} & \text { Reset source } \\ & {[704]} \end{aligned}$	Setting the converter reset source. PWM generating will be turned off. It can be used as an emergency stop. No fault will be generated, only a warning. RESET is needed for example in applications where the motors are switched at the output. Before switching BIN4 the power output, PWM outputs should be blocked, otherwise there is a high risk of damage to the power elements of the converter.	
Look choises of parameter's Quick stop source. [986] (page 33)		
Quick stop source. [986]	Setting the source of the quick stop. It is necessary to cancel and then start the converter start command again for the converter to start after a quick stop. It is used to stop the machinery with working personnel, which comes into contact with the rotating parts. For example, signal light barrier or door limit switch. When active, the drive will stop by following the faster deceleration ramp, defined by the time parameter Quick STOP [806] (page 33).	
None	Function is inactive.	
BIN1	Function is activated by activation of the 1st binary input.	
BIN2	Function is activated by activation of the 2nd binary input.	
BIN3	Function is activated by activation of the 3rd binary input.	
BIN4	Function is activated by activation of the 4th binary input.	
BIN5	Function is activated by activation of the 5th binary input.	
BIN6	Function is activated by activation of the 6th binary input.	
Special	Function is activated by a special preset signal and switching thresholds	
$\begin{array}{\|ll\|} \hline \text { Quick } & \text { STOP } \\ {[806]} \end{array}$	Realtive value of ramp-down time when activating the Quick stop Quick stop source. 10.0 [986] (page 33).	
$\begin{aligned} & 0.1 \% \div 100.0 \\ & \% \end{aligned}$		

## SPECIAL SETTING

Group of parameters number [215]
Special source setting for the START, STOP and RESET.

## SPECIAL START

Group of parameters number [987]
Special source setting of Start.

MENU \SETTINGS \COMMANDS \START STOP RESET \SPECIAL SETTING \SPECIAL START

Name [ID]	Description	Def.
Start [503] $\quad$ signal	Selection of the signal for Start control.	$[184]$    inputs Binary
Signal		
$\begin{array}{\|ll\|} \hline \text { Start } \\ {[504]} \end{array} \quad \text { active } .$	The condition for activation the Start.	BIN1
Look choises of parameter's Binary inputs [184] (page 16)		
$\begin{array}{\|ll\|} \hline \text { Start } \\ \text { [505] } \end{array} \text { inactive }$	The condition for deactivation the Start, when selected signal is of numeric type "value".	
Look choises of parameter's Binary inputs [184] (page 16)		

## SPECIAL RESET

Group of parameters number [333]
Special RESET setting.
MENU \SETTINGS \COMMANDS \START STOP RESET \ SPECIAL SETTING \SPECIAL RESET

Name [ID]	Description	Def.	
Reset signal   [524]	Selection of the signal for RESET control.	$\begin{aligned} & {[184]} \\ & \text { inputs } \end{aligned}$	Binary
Signal			
Reset   [525] active	The condition for activation of RESET.	BIN4	
Look choises of parameter's Binary inputs [184] (page 16)			
inactive The condition for deactivation of RESET, when selected signal is of numeric type "value".	The condition for deactivation of RESET, when selected signal is of numeric type "value".		
Look choises of parameter's Binary inputs [184] (page 16)			

## SPECIAL QUICK STOP

Group of parameters number [989]
Setting the special source of the Quick Stop.
MENU \SETTINGS \COMMANDS \START STOP RESET \ SPECIAL SETTING \SPECIAL QUICK STOP

Name [ID]	Description	Def.
Quick stop signal [821]	Selection of the signal for Quick Stop control.	$\begin{array}{\|ll\|} \hline[184] & \text { Binary } \\ \text { inputs } \end{array}$
Signal		
Quick stop active [822]	The condition for activation of Quick Stop.	
Look choises of parameter's Binary inputs [184] (page 16)		
Quick stop inactive [823]	The condition for deactivation of Quick Stop, when selected signal is of numeric type "value".	
Look choises of parameter's Binary inputs [184] (page 16)		
Start delay [1238]	Delay between receiving START command and its execution.	0.000 s
$0.000 \mathrm{~s} \div 300.000 \mathrm{~s}$		
Stop delay [1487]	Delay between receiving STOP command and its execution.	0.000 s
$0.000 \mathrm{~s} \div 300.000 \mathrm{~s}$		

### 7.3.3 FREQUENCY SETPOINT

Group of parameters number [7]

Setting of frequency setpoint of the converter.

Name [ID]	Description	Def.
Source of freq. setpoint [706]	Setting the source of the frequency setpoint.	AIN1
Value	The source of the setpoint is fixed value.	
Control panel	The source of the setpoint are arrow keys in the MONITOR window in the control panel.	
AIN1	The source of the setpoint is the corresponding analog input.	
AIN2	The source of the setpoint is the corresponding analog input.	
AIN3	The source of the setpoint is the corresponding analog input.	
AIN4	The source of the setpoint is the corresponding analog input.	
Discrete setpoints	The source of the setpoint are the discrete setpoint values [60] (page 36). It is not possible to select this setting if the discrete setpoint speeds are assigned elsewhere (e.g. Source of PC setpoint [130] (page 68)).	
Up/down commands	The source of the setpoint are the up/down commands, please see [970] (page 38).	
Process controller	The source of the setpoint is the process controller, please see [385] (page 67).	
MODBUS	The source of the setpoint is the MODBUS serial communication, please see [658] (page 78).	
PROFIBUS	The source of the setpoint is the PROFIBUS serial communication, please see [812] (page 81).	
Special	The source of the setpoint is the special setting.	
Maximal value	The source of the setpoint is the maximum value of the quantity range.	
Setpoint frequency [344]	Fixed value of the setpoint frequency.	0.00 Hz
$\left\lvert\, \begin{array}{lcc} \text { Min. }{ }^{7} \quad \div \quad \text { Max. } \\ \text { frequency } & \text { [111] } \end{array}\right.$	${ }^{7}$ Value depends on the parameter Freq. reverse source [195] (str. 35). For the choice ${ }^{1}$,According to the setpoint value" is from -(Max. frequency [111] (str. 41)), for other choices is from Min. frequency [110] (str. 41).	
Freq. reverse   source [195]	Setting the reverse source of the motor frequency setpoint	BIN6
Control panel	Pressing the gray REVERSE button on the control panel causes the motor reverse.	
No reverse	The motor will always turn in a positive direction, it is the forward direction.	
Permanent reverse	The motor will always turn in a negative direction, it is the backward direction.	
BIN1	Reverse is activated by 1st binary input.	
BIN2	Reverse is activated by 2nd binary input.	
BIN3	Reverse is activated by 3rd binary input.	
BIN4	Reverse is activated by 4th binary input.	
BIN5	Reverse is activated by 5th binary input.	
BIN6	Reverse is activated by 6th binary input.	
According to the setpoint value	Rotating direction is dependent on the frequency setpoint polarity Setpoint frequency [344] (page 35).	
MODBUS	The motor reverse is controlled over the serial communication. See the MODBUS serial communication protocol.	
PROFIBUS	The motor reverse is controlled over the serial communication. See the PROFIBUS serial communication protocol.	
Special	The motor reverse is controlled by the special setting [988] (page 36).	
Fsetpoint reset in stop [1152]	Method of frequency setpoint channel storing or reset.	No
No	Frequency setpoint always equals the selected source.	
Yes	While in stop, the setpoint frequency is always set to 0 Hz .	
Fsetpoint transfer [1153]	Setting the behavior of freq. setpoint	During power off
$\square$ During power off	The converter keeps the setpoint value after the power off.	
$\square$ During set   change	Setpoint value is transferred between the parameter sets.	

## SPECIAL SETTING

Group of parameters number [988]
Setting a special source for the frequency setpoint and reverse.
MENU \SETTINGS \COMMANDS \FREQUENCY SETPOINT \ SPECIAL SETTING


### 7.3.4 VOLTAGE SETPOINT

Group of parameters number [787]
MENU \SETTINGS \COMMANDS \VOLTAGE SETPOINT

Name [ID]	Description	De
Voltage setpoint [789]	Fixed value of the voltage setpoint on the converter output.	400 V
$\left\lvert\, \begin{array}{lr} \operatorname{Min} . & V^{8} \\ \text { Max. } V^{9} \end{array}\right.$	If the V/f curve is activated ( V/f Curve [782] (page 40)), voltage setpoint is taken into account on the V/f curve gradient, thus it controls the end voltage.   ${ }^{8}$ Value is multiple of parameters Nom. voltage [59] (str. 30) and Starting voltage (min) [90] (str. 40).   ${ }^{9}$ Value depends on the parameter V/f Curve [782] (str. 40). For the choice „Turned on" is multiple of parameters Nom. voltage [59] (str. 30) a End voltage [94] (str. 40). For the choice ",Turned off" is multiple of parameters Nom. voltage [59] (str. 30) a \%p495.	
Signal for VS [790]	Selection of the parameter that represents the voltage setpoint valu	
Signal	If the V/f curve is activated ( V/f Curve [782] (page 40)), voltage setpoint is taken into account on the V/f curve gradient, thus it controls the end voltage.	

### 7.3.5 DISCRETE SETPOINTS

## Group of parameters number [60]

Discrete setpoint value setting.
Discrete setpoint values can serve as the setpoint values signals for any quantity as exact, predefined values.

MENU \SETTINGS \COMMANDS \DISCRETE SETPOINTS

Name [ID]	Description	Def.
Discrete   setpoint switch   [576]	Discrete setpoint value switch type setting.	Single
Combined	Only the first 3 bits of the DS switch are used. Output value corresponds to the binary   combination of these bits. If no bits are active, the Value Value 0 [220] (page 37) is on the   output. If only 1 bit is active, the Value Value 1 [239] (page 37) is on the output and so on.	
Single	Every single bit of the DS switch stands for one discrete setpoint value (1.bit stands for the   1. value and so on.). If there are more DS switches active, value with the higher switching   bit is on the output. If no DS switch is active, discrete value 0 is on the output.	

## DISCRETE VALUES

Group of parameters number [84]

Single discrete value setting. It is possible to set the value only when the signal Discrete setpoint [10] (page 14 ) is connected. Physical dimension and range of values are inherited according to the target where the signal is connected.
Warning! When configuring speed control of a crane drive, it might be necessary to set Value 0 [220] (page 37) a Value 1 [239] (page 37) to the same value.

Name [ID]	Description	Def.
Value 0 [220]	Zero value of the discrete setpoint value. This value applies, when no switch bit is set.	-
- - -		
Value 1 [239]	First value of the discrete setpoint value.	-
- - -		
Value 2 [245]	Second value of the discrete setpoint value.	-
---		
Value 3 [293]	Third value of the discrete setpoint value.	-
- - -		
Value 4 [475]	Fourth value of the discrete setpoint value.	-
---		
Value 5 [299]	Fifth value of the discrete setpoint value.	-
---		
Value 6 [550]	Sixth value of the discrete setpoint value.	-
- - -		
Value 7 [551]	Seventh value of the discrete setpoint value.	-
---		

## DS SWITCH

Group of parameters number [100]
Binary switch setting for switching the discrete setpoint values.
MENU \SETTINGS \COMMANDS \DISCRETE SETPOINTS \DS SWITCH

Name [ID]	Description	Def.
Bit1 $\quad$ DS   source [552]	Bit source setting for the binary switch for the discrete setpoint values. Its function depends on the Discrete setpoint switch [576] (page 36) parameter setting.	None
Look choises of parameter's Quick stop source. [986] (page 33)		
Bit2 DS   source [555]	See Bit1 DS source [552] (page 37).	None
Look choises of parameter's Quick stop source. [986] (page 33)		
Bit3   source [558]	See Bit1 DS source [552] (page 37).	None
Look choises of parameter's Quick stop source. [986] (page 33)		
Bit4 DS   source [561]	See Bit1 DS source [552] (page 37).	None
Look choises of parameter's Quick stop source. [986] (page 33)		
Bit5 $\quad$ DS   source [564]	See Bit1 DS source [552] (page 37).	None
Look choises of parameter's Quick stop source. [986] (page 33)		
Bit6 $\quad$ DS   source [567]	See Bit1 DS source [552] (page 37).	None
Look choises of parameter's Quick stop source. [986] (page 33)		
Bit7 $\quad$ DS   source [570]	See Bit1 DS source [552] (page 37).	None
Look choises of parameter's Quick stop source. [986] (page 33)		

## SPECIAL SETTING DS

Group of parameters number [235]

Binary switch special setting.
MENU \SETTINGS \COMMANDS \DISCRETE SETPOINTS \DS SWITCH \SPECIAL SETTING DS

Name [ID]	Description	Def.
Bit1 DS mask	Binary switch bit will be active if at least one of the selected binary inputs or logical	
blocks will be active.		

### 7.3.6 UP/DOWN COMMANDS

Group of parameters number [970]
Up/down commands serves for entering the setpoint value using the up (increase) and down (decrease) commands.

MENU \SETTINGS \COMMANDS \UP/DOWN COMMANDS

Name [ID]	Description	Def.
UP/DOWN Type   [978]	Defines the type of Up/Down commands function.	Type 1
Type 1	Both the up and down commands are applied. Converter stores the last set value in the   memory. Stands for the common motor-potentiometer in the VQFREM converters.	
Type 2	Only the up command is applied. The down command is applied automatically on the   converter stop. Converter does not store the last set value in the memory. Stands for the   common memory motor-potentiometer in the VQFREM converters.	
MP slope [979]  $0.01 \% / s$   $0.01 \% / s \div 100.00$   $\% / s$		

UNIFREM VF v.2.41x

Name [ID]	Description	Def.		
Source of Up   command [971]	Setting the source for the up command.	None		
Look choises of parameter's Quick stop source. [986] (page 33)   Source of Down   command [974] Setting the source for the down command.	None			
Look choises of parameter's Quick stop source. [986] (page 33)				

## SPECIAL SETTING

Group of parameters number [138]
Special source setting for up and down commands.
MENU \SETTINGS \COMMANDS \UP/DOWN COMMANDS \SPECIAL SETTING

Name [ID]	Description	Def.
Up mask [972]	Up command will be active if at least one of the selected binary inputs or logical blocks   will be active.	
Look choises of parameter's Bit1 DS mask [553] (page 38)		
Down mask   [975]	Down command will be active if at least one of the selected binary inputs or logical   blocks will be active.	
Look choises of parameter's Bit1 DS mask [553] (page 38)		

### 7.3.7 AUTO OFF

Group of parameters number [1569]
Parameters of automatic off.

MENU \SETTINGS \COMMANDS \AUTO OFF

Name [ID]	Description	Def.
Auto off mode [1572]	Selecting the one or more variables for auto off feature.   Any of the selected variables can trigger auto off, whichever fulfills the conditions first.	
$\square$ Low power \| $\square$ Low frequency \| $\square$ Low Cos Phi \| $\square$ Spec. signal		
$\left\lvert\, \begin{array}{ll} \operatorname{Min} . & \text { power } \\ {[1573]} \end{array}\right.$	If the value of Power [66] (page 15) does not exceed this value for the time set by Meas. time [1570] (page 39), auto off is performed. Negative values of this parameter represent minimum regenerative power.	0 W
-3E6 W $~+3 \mathrm{E} 6 \mathrm{~W}$		
Min. frekvencia [1574]	If the value of Freq. INV abs. [472] (page 15) does not exceed this value for the time set by Meas. time [1570] (page 39), auto off is performed.	$\begin{aligned} & 10.00 \\ & \mathrm{~Hz} \end{aligned}$
0.00 $\div$ Max.   frequency [111]		
$\operatorname{Min} . \quad$ Cos Phi $[1575]$	If the value of Cos Phi [67] (page 15) does not exceed this value for the time set by Meas. time [1570] (page 39), auto off is performed. Negative values of this parameter represent minimum regenerative power factor.	0.500
-1.000 $\div 1.000$		
Look choises of parameter's Logical blocks [8] (page 17)		
Meas.   $[1570]$ time	Measurement time; minimal period of time for the any of the auto off conditions to be fulfilled to perform auto off.	$\begin{aligned} & 1.0 \\ & \mathrm{~min} \end{aligned}$
$\begin{aligned} & 0.1 \mathrm{~min} \div 120.0 \\ & \mathrm{~min} \\ & \hline \end{aligned}$		
Off time [1571]	Off time after auto-off. After the expiration of this timer after auto-off, inverter starts and tries again whether the run conditions are met. Time to next start is shown in ON / OFF time [1577] (page 14).	30.0   min
$\begin{aligned} & 0.1 \min \div 2000.0 \\ & \min \end{aligned}$	Time to next start can be reset by cancelling and resending the Start command or short Reset command.	or by a

### 7.4 CONTROL AND REGULATION

Group of parameters number [11]
Settings of the motor control parameters.

### 7.4.1 V/f CONTROL

Group of parameters number [81]
Setting the dependence between the output voltage and the frequency (V/f curve) and operation modes designated for the motor V/f (scalar) control.

MENU \SETTINGS \CONTROL AND REGULATION \V/F CONTROL

Name [ID]	Description	Def.
$\begin{array}{\|l} \text { V/f } \\ {[782]} \end{array}$	Voltage setpoint calculation setting.	Turned on
Turned on	Voltage depends on the frequency according to the V/f curve.	
Turned off	Voltage and frequency are controlled independently.	
Starting voltage (min) [90]	Starting voltage of the V/f curve and minimum limit of the output voltage which corresponds the percentage value of the nominal load voltage.	7.00 \%
$\left\lvert\, \begin{aligned} & 0.00 \div \text { End } \\ & \text { voltage [94] } \end{aligned}\right.$	Starting voltage which will be set on the output on zero frequency. Represents the rate of the initial start if the device. Too high value can cause a failure on the startup E10-Overfrequency (page 27). Also defines the minimal threshold for the voltage setpoint range when the V/f curve is disabled.	
End voltage [94]	End voltage of the V/f curve.	100.0 \%
$\left\|\begin{array}{lll} 0.1 & \% & \div \\ 500.0 & \% & \end{array}\right\|$	Voltage that corresponds with the nominal frequency Nom. frequency [4] (page 30) and directly $\div$ influences the load excitation level. When increasing the frequency beyond the nominal frequency Nom. frequency [4] (page 30), the voltage value stays at this limit. This parameter has no meaning when the V/f curve is disabled V/f Curve [782] (page 40).	

## V/f CURVE

Group of parameters number [382]
Setting the dependence between the ouput voltage and the output frequency (V/f curve).
MENU \SETTINGS \CONTROL AND REGULATION \V/F CONTROL \V/F CURVE

Name [ID]	Description	Def.
Frequency shift [98]	Frequency shift of the V/f curve	3.0 Hz
$0.0 \div$ Nom. frequency [4]	Frequency value that divides the V/f characteristics to the high-excitation area ( frequency lower that the $F$ shift) and the normal excitation area (frequency higher that the F shift).	
V/f exponent   [91]	V/f curve exponent.	1.00
$1.00 \div 2.00$	Affects the curvature of the whole V/f curve to an exponential shape. The exponent value 1.00 represents the linear shape and the value 2.00 a quadratic process. Using the exponential V/f curve has its significance in pumps and fans, where the load torque grows with the rotation speed and field weakening of the motor is allowed at low speed to save energy.	
$\begin{aligned} & \text { Exp. shift V/f } \\ & \text { [92] } \end{aligned}$	V/f curve shift exponent in the range from 0 Hz to Frequency shift [98] (page 40).	1.00
$1.00 \div 2.00$	Affects the curvature of the V/f curve in the area to Frequency shift [98] (page 40). The exponent value 1.00 represents the linear shape and the value 2.00 a quadratic process. Using an exponent, it is possible to control the non-linear features of induction motor better near zero frequency .	

### 7.4.2 FREQUENCY RAMPS

Group of parameters number [106]
Setting the times for ramp-up, ramp-down and the output frequency limits.
MENU \SETTINGS \CONTROL AND REGULATION \FREQUENCY RAMPS

Name [ID]	Description	Def.

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
Min.   frequency   [110]	Minimal frequency.	0.00 Hz
$\begin{aligned} & 0.00 \div \text { Max. } \\ & \text { frequency } \\ & {[111]} \end{aligned}$	Using the minimal frequency, it is possible to define the maximal operating speed of the drive, which is superior to all other ways of entering the speed. For example, defining the minimal speed of the pump during the pressure regulation, to ensure lubrication and cooling of bearings and sealings.	
Max. frequency [111]	Maximal frequency.	50.00 Hz
$\begin{array}{lr} 0.00 \mathrm{~Hz} \\ 3000.00 \mathrm{~Hz} \end{array}$	$\div$ Using the maximal frequency, it is possible to define the maximal operating speed of the drive, which is superior to all other ways of entering the speed.	
Ramp type   [107]	Setting the method of entering the frequency ramp parameters.	Time adherent
Time adherent	For setting the ramp speed, the ramp-up ( Ramp-up 1 time [116] (page 41), Ramp-up 2 time [118] (page 41)) and ramp-down ( Ramp-down 1 time [119] (page 41), Ramp-down 2 time [120] (page 42)) time parameters [s] for single sections will apply.	
Slope adherent	For setting the ramp speed, the ramp-up ( Ramp-up 1 slope [124] (page 41), Ramp-up 2 slope [126] (page 41)) and ramp-down ( Ramp-down 1 slope [127] (page 42), Ramp-down 2 slope [129] (page 42)) slope parameters [Hz/s] for single sections will apply.	

## RAMP-UP

Group of parameters number [108]
Ramp-up settings. Restriction of motor acceleration.
MENU \SETTINGS \CONTROL AND REGULATION \FREQUENCY RAMPS \RAMP-UP

Name [ID]	Description	Def.
$\begin{array}{\|lll} \hline \begin{array}{l} \text { Ramp-up } \\ {[116]} \end{array} & 1 & \text { time } \\ \hline \end{array}$	Ramp-up time for the first section of the frequency ramp.	5.00 s
$0.00 \mathrm{~s} \div 3000.00 \mathrm{~s}$	First section of the ramp-up is from 0 Hz till the Ramp-up break [117] (page 41) value.	
$\begin{array}{\|lll} \hline \begin{array}{l} \text { Ramp-up } \\ {[118]} \end{array} & 2 & \text { time } \\ \hline \end{array}$	Ramp-up time for the second section of the frequency ramp.	5.00 s
$0.00 \mathrm{~s} \div 3000.00 \mathrm{~s}$	Second section of the ramp-up is from the value Ramp-up break [117] (page 41) to the parameter value Max. frequency [111] (page 41).	
Ramp-up   [117] break	Ramp-up break for the first section of the frequency ramp.	$\begin{aligned} & 50.00 \\ & \mathrm{~Hz} \end{aligned}$
$0.00 \quad \div \quad$ Max. frequency [111]	If the ramp should be simple (single section), set this parameter to its maximum value.	
$\begin{array}{\|lll} \hline \begin{array}{l} \text { Ramp-up } \\ {[124]} \end{array} & 1 & \text { slope } \\ \hline \end{array}$		
$\begin{array}{lr} 0.001 & \mathrm{~Hz} / \mathrm{s} \\ 30000.000 \mathrm{~Hz} / \mathrm{s} \end{array}$	It is actually the frequency ramp acceleration in the first ramp-up section.	
$\begin{array}{lll} \hline \begin{array}{l} \text { Ramp-up } \\ {[126]} \end{array} & 2 & \text { slope } \\ \hline \end{array}$	$\begin{array}{l}\text { Setting the ramp-up slope from frequency Ramp-up break [117] (page 41) to } \\ \text { the frequency Max. frequency [111] (page 41). }\end{array}$ $\begin{array}{l}5.000 \\ \mathrm{~Hz} / \mathrm{s}\end{array}$	
$\begin{array}{lr} 0.001 & \mathrm{~Hz} / \mathrm{s} \\ 30000.000 \mathrm{~Hz} / \mathrm{s} \end{array}$	It is actually the frequency ramp acceleration in the second ramp-up section.	

## RAMP-DOWN

Group of parameters number [115]
Ramp-down settings. Restriction of motor deceleration.

MENU \SETTINGS \CONTROL AND REGULATION \FREQUENCY RAMPS \RAMP-DOWN

Name [ID]	Description	Def.
Ramp-down time [119]	1 Ramp-down time for the first section of the frequency ramp.	5.00 s
$0.00 \mathrm{~s} \div 3000$.	First section of the ramp-down is from the value Ramp-do	42) to 0

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
s	Hz.	
Ramp-down time [120]	Ramp-down time for the second section of the frequency ramp.	5.00 s
$0.00 \mathrm{~s} \div 3000.00$	Second section of the ramp-down is from the value Max. frequency [111] (page 41) to the parameter value Ramp-down break [121] (page 42).	
Ramp-down break [121]	Ramp-down break of the frequency ramp.	$\begin{aligned} & \mathrm{50.00} \\ & \mathrm{~Hz} \end{aligned}$
$\begin{array}{\|lcc\|} \hline 0.00 & \div & \text { Max. } \\ \text { frequency } & \text { [111] } \end{array}$	If the ramp should be simple (single section), set this parameter to its maximum value.	
Ramp-down slope [127]	Setting the ramp-down slope Ramp-down break [121] (page 42) to zero frequency.	5.000   $\mathrm{~Hz} / \mathrm{s}$
$0.001 \mathrm{~Hz} / \mathrm{s}$   $30000.000 \mathrm{~Hz} / \mathrm{s}$$\div$	The frequency ramp deceleration in the first ramp-down section.	
Ramp-down 2 slope [129]	Setting the ramp-down slope from frequency Max. frequency [111] (page 41) to 5.000 the frequency Ramp-down break [121] (page 42).	
$0.001 \mathrm{~Hz} / \mathrm{s}$   $30000.000 \mathrm{~Hz} / \mathrm{s}$$\div$	The frequency ramp deceleration in the second ramp-down section.	
Quick reverse [807]	Setting of the accelerated ramp-down speed against the defined ramp-down, when the frequency setpoint has the opposite symbol as the frequency ramp output (Quick reverse command).	
$0.1 \% \div 1000.0$	The Quick reverse function serves for better drive control on manual control, mainly in cranes and transport vehicles. For the Quick reverse function it is necessary to dissipate the kinetic energy through a braking module or flux braking.	

## S-CURVE

Group of parameters number [872]
Setting the curvature of the frequency profile to the $S$ shape.
Serves for the drive recoil restriction and a smoother operation of the device. It is mainly used for lift, traction and crane applications.

MENU \SETTINGS \CONTROL AND REGULATION \FREQUENCY RAMPS \S-CURVE

Name [ID]	Description	Def.
S-curve mode [874]	Turning on / off and the selection of the S-curve operation	
$\square$ Turning the S-curve	Turning on the curvature of the ramp functions. This option is superior to other optional Scurve modes in individual quadrants of the drive.	
$\begin{array}{\|l\|} \hline \quad \text { S-curve } \\ \text { ramp-up + } \\ \hline \end{array}$	Turning on / off the S-curve for ramp-up from 0 to positive frequency.	
$\begin{array}{\|l} \text { S-curve } \\ \text { ramp-down }+ \\ \hline \end{array}$	Turning on / off the S-curve for ramp-down from positive frequency to 0 .	
$\begin{array}{\|l} \square \quad \text { S-curve } \\ \text { ramp-up - } \\ \hline \end{array}$	Turning on / off the S-curve for ramp-up from 0 to negative frequency.	
$\square \quad$ S-curve ramp-down -	Turning on / off the S-curve for ramp-down from negative frequency to 0 .	
$\square$ S splitting	Splitting the S-curve to two separate S sections if the ramp passes 0 Hz on ramp-up.	
\|rer Higher	Setting the $5 x$ higher insensitivity to changes of the frequency setpoint against the standard insensitivity $+/-0.01$ \% from Fnom. Insensitivity secures the operation of S-curves even on interfered frequency setpoint signals (for example AINx).	
S-curve curvature [873]	Setting the curvature of the S-curve. It is the curvature degree of the characteristics.	100.0 \%
$1.0 \%$ $\%$	When curvature equals $100 \%$, the linear section will not be present during the ramp operation. When curvature equals $50 \%$, there will be a linear section in the middle of the S -curve with the duration of $50 \%$ of the total time. When curvature equals $0 \%$, the whole ramp is linear. ATTENTION! BY $100 \%$ curvature, the time needed to reach the frequency setpoint is double the time that is needed for the linear frequency ramp.	

### 7.4.3 VOLTAGE RAMP

Group of parameters number [976]
Ramp settings for voltage setpoint. If the V/f curve is turned on V/f Curve [782] (page 40) voltage ramp output is set to voltage setpoint in STOP or it corrects the slope of the V/f curve in START. If the V/f curve is turned off, it is preset to the value of Starting voltage (min) [90] (page 40) in STOP or it directly controls the output converter voltage in START.

MENU \ SETTINGS \CONTROL AND REGULATION \VOLTAGE RAMP

Name [ID]	Description	Def.
Max. voltage [495]	Setting the voltage limit on the output of the frequency converter. 100	100.0 \%
$\left\lvert\, \begin{array}{ll} 5.0 & \% \\ 500.0 \end{array}\right.$	In scalar control, voltage is limited to this value. In vector control it is used as satura output of current controllers. Represents a percentage of the nominal voltage of the mot voltage [59] (page 30). This means that if the DC link has sufficient voltage it is p supply higher voltage to the motor. If the inverter is made for 400 V and motor for setting this parameter to $174 \%$, an increase in motor power and operation with nomi up to 87 Hz is achieved.	ration of the motor Nom. possible to or 230V, by minal torque
Max. duty   cycle   [1289]	Maximum allowed duty cycle of the converter output power elements. 100	100.0 \%
$\begin{array}{ll} 0.0 & \% \\ 500.0 \end{array}$	This parameter limits the overmodulation and thus higher harmonic components of voltages and currents at the moment, when there is not not sufficient DC bus voltage. It can be combined with a higher value of the parameter Max. voltage [495] (page 43).	
$\begin{array}{\|ll\|} \hline \text { Rise } & \text { time } \\ {[791]} & \\ \hline \end{array}$	Voltage setpoint rise time from 0 V to the parameter value Nom. voltage [59] (page 5.00 s 30).	
$\begin{aligned} & 0.00 \mathrm{~s} \\ & 3600.00 \mathrm{~s} \end{aligned}$		
$\begin{array}{\|lr\|} \hline \text { Fall time } \\ {[792]} & \\ \hline \end{array}$	$\begin{array}{l}\text { Voltage setpoint fall time from the parameter value Nom. voltage [59] (page 30) to } \\ \text { 0V. } \\ \text { ( } 0.00 \mathrm{~s}\end{array}$	
$\begin{aligned} & 0.00 \mathrm{~s} \\ & 3600.00 \mathrm{~s} \end{aligned}$		

### 7.4.4 VOLT. CONTROLLER

Group of parameters number [473]
Output voltage controller. This controller helps to maintain stable output voltage and minimize the effect of filter or transform.

MENU \SETTINGS \CONTROL AND REGULATION \VOLT. CONTROLLER

Name [ID]	Description	Def.
Volt. cont. mode [109]	Voltage controller mode of operation. Selection of the controlled quantity and the feedback.	Turned off
Turned off	Voltage controller is turned off.	
Min(U,V,W)	Voltage feedback is evaluated as the minimum voltage of individual phases. reference and the feedback are interpreted as phase-to-phase voltages.	Voltage
Amp(U,V,W)	Voltage feedback is evaluated as the instantaneous voltage amplitude. Voltage re and the feedback are interpreted as phase-to-phase voltages.	eference
Avg(U,V,W)	Voltage feedback is evaluated as the average voltage of individual phases. reference and the feedback are interpreted as phase-to-phase voltages.	Voltage
Phase U	Voltage of the first phase (U) is evaluated as the voltage feedback. Voltage referen the feedback are interpreted as phase-to-neutral voltages.	nce and
Phase V	Voltage of the second phase (V) is evaluated as the voltage feedback. Voltage re and the feedback are interpreted as phase-to-neutral voltages.	eference
Phase W	Voltage of the third phase (W) is evaluated as the voltage feedback. Voltage referen the feedback are interpreted as phase-to-neutral voltages.	nce and
Volt. ref.   output [927]	Output voltage reference. This value serves as the setpoint for voltage controller.	400.0 V
$\text { Min. } \mathrm{V}^{10} \div \operatorname{Max}$ $V^{11}$	${ }^{10}$ Value of the lower limit is set in the service parameter by the manufacturer.	


Name [ID]	Description	Def.
	${ }^{11}$ Value of the upper limit is set in the service parameter by the manufacturer.	
Volt. ref. ramp [838]	Voltage reference ramp, voltage reference rate of change in V/s.	200.0 V
$0.0 \mathrm{~V} \div 10000.0$		
$\begin{array}{\|l\|l} \hline P \text { term volt. } \\ \text { cont. }[474] \end{array}$	Proportional gain of the voltage controller.	0.25
$0.00 \div 1000.00$		
$\begin{array}{\|c\|} \hline \begin{array}{c} \text { term } \\ \text { cont. }[476] \end{array} \\ \text { volt. } \end{array}$	Time constant of the integration term of the voltage controller.	5.00 s
$\begin{array}{\|l\|} \hline 0.00 \mathrm{~s} \\ 1000.00 \mathrm{~s} \\ \hline \end{array}$		
D term volt. cont. [1484]	Time constant of the derivation term of voltage controller.	0.000 s
$\begin{aligned} & 0.000 \mathrm{~s} \quad \div \\ & 25.000 \mathrm{~s} \end{aligned}$		
Voltage   [283] filter	Time constant of the voltage feedback filter.	0.002 s
$\begin{aligned} & 0.000 \mathrm{~s} \div 3.000 \\ & \mathrm{~s} \end{aligned}$		
Unbalance   volt.   [1184] filter	Feedback voltage filter suppressing unbalanced voltages during unbalaced output load. This mode can be used only in $\mathrm{Amp}(\mathrm{U}, \mathrm{V}, \mathrm{W})$ mode of control.	Turned off
Turned off \| Turn	ned on	
Vac feedback error [1604]	Enable evaluation of AC voltage measurement fault (Voltage Controller feedback). If the measured voltage is lower than $20 \%$ of the parameter Volt. ref. output [927] (page 43) and the inverter output voltage is saturated to a maximum value for more than 5s, fault E21-Volt. measurement (page 27) is generated. This can occur after a failure of the AC measurement electronics or interruption of the connection between the inverter output and the output voltage measurement connection point.	Turned on
Turned off	Evaluation of AC voltage measurement fault is turned off.	
Turned on	Evaluation of AC voltage measurement fault is turned on.	

### 7.4.5 MAX. CURRENT CONTROLLER (MCC)

Group of parameters number [351]
Maximum current controller parameters (MCC), also called the Current limit.
MENU \SETTINGS \CONTROL AND REGULATION \MAX. CURRENT CONTROLLER (MCC)

Name [ID]	Description	Def.
	Turns on Maximum Current Controller (MCC), which restricts the output current to   Max. mot. current [5] (page 44) or Max. regen. current [549] (page 45) by the   correction of output frequency. It is possible to turn on MCC operation for motoric,	
Max. current   regenerative or both modes of operation. Current limit is used to start large inertial   controller   [352]   loads or load proportional to the motor speed (pumps, fans, mixers, mills). It can also turned   be used in applications, where motor overload occurs. If the maximum value is lower off   than Permanent current [24] (page 31), MCC ensures permanent operation of the   converter. In the beginning of the operation or near zero frequency, output current can   exceed the limit value set by Max. mot. current [5] (page 44) or Max. regen. current   [549] (page 45).		
Inarned off	Inative maximum current controller.	
Freq. control	MCC is enabled and the output current is restricted to the value Max. mot. current [5] (page   44). Current restriction is achieved by lowering the frequency. This type of regulation is   suitable for motors witch a fly-wheel or if the motor load is growing when the rotation speed is   growing.	
Volt. control	MCC is enabled and the output current is restricted to the value Max. mot. current [5] (page   44). Restriction is achieved by the output voltage correction, while the frequency remains   unchanged. Suitable for artificial networks and single-phase appliances.	


Name [ID]	Description	De
curren		
$\begin{aligned} & 0.01 \\ & 1,75)^{6} \end{aligned} \div$	Upper limit of the motor current in the motoric mode of operation. This current is not exceeded, when the maximum current controller (MCC) in motoric mode is turned on. During fast load step changes can the current on the converter output shortly exceed this limit, it depends on the load inertia, rate of load and the MCC dynamics [351] (page 44).   ${ }^{6}$ The value depends on the inverter power line. See installation manual.	
Max. re current	Maximal	5.10 A
$\left(\begin{array}{l} 0.01 \\ 1,75)^{6} \end{array} \div\right.$	Upper limit of the motor current during the regenerative operation that is restricted, while the maximum current controller (MCC) Max. current controller [352] (page 44) in generator mode is operational. During load step changes can the current on the converter output shortly exceed this limit, it depends on the load inertia, kind of the load and the MCC dynamics.   ${ }^{6}$ The value depends on the inverter power line. See installation manual.	
P term of the MCC [353]	Gain value of the maximum current controller (MCC) proportional term	2.000
$\left\lvert\, \begin{aligned} & 0.000 \\ & 30.000 \end{aligned}\right.$	The higher the P term of MCC value, the bigger the damping and lower the current overshoot caused by load steps and speed changes. On the slow l-term of MCC, lower gain is set and on the faster term higher gain, so the MCC remains stable. When changing this parameter, we advise consulting this step always with the VONSCH s.r.o. service.	
I term of the MCC [354]	Integration time constant value of the maximum current controller	0.030   s
$\begin{array}{\|ll} \hline 0.001 \mathrm{~s} \\ 100.000 \mathrm{~s} \end{array}$	Determines the current regulation dynamics using the MCC. When changing this parameter, we always recoomend consulting this step with the VONSCH s.r.o. service.	

### 7.4.6 BRAKE MODULE

Group of parameters number [376]
Brake module operation settings parameters.
Brake module (BM) is used for dissipation of excess energy, which is created during the motor regenerative operation or deexcitation of single-phase or other induction loads. Prerequisite activity is the connecting of brake resistor (BR) to BR and + power terminals. Thermal contact of BR can be connected to an binary input as RESET Reset source [704] (page 33) or External fault External fault source [225] (page 75).

MENU \SETTINGS \CONTROL AND REGULATION \BRAKE MODULE

Name [ID]	Description	Def.
Brake module [346]	Turning on the Brake module (BM) operation. BM serves for the energy transfer that flows back during the regenerative operation to the converter. Correct function is conditional to the braking resistor (BR) being connected to the power terminals BR and + .	Turned off
Turned off	Brake module is turned off.	
Turned on	Brake module is turned on and operates if the Braking Resistor (BR) is connec converter.	d to the
BM operating   voltage [377]	Brake module operation voltage.	685.0 V
Undervoltage ${ }^{1}$ Overvoltage ${ }^{2}$	When the value of this parameter is too high, the risk of the fault " E4-Overvoltag 27)"is high. Probability that this fault occurs in the first phase of breaking is high a BR of less power rating is used.   ${ }^{1}$ Refer to chapter 3.1 Undervoltage, overvoltage (str. 13) by product type.   ${ }^{2}$ Refer to chapter 3.1 Undervoltage, overvoltage (str. 13) by product type.	ge (page her when
$\left\lvert\, \begin{array}{ll} \mathrm{BM} & \text { blocking } \\ {[1204]} & \end{array}\right.$	Setting the source of blocking the brake module operation. Thermal contact protects the brake module against damage. This parameter can select binary input BINx, where this contact is connected to, or the output of logical block.	
Look choises of parameter's Bit1 DS mask [553] (page 38)		
BM blocking fault [1205]	Evaluation of BM blocking fault.	Warning
Warning	Warning " W53-BM blocking (page 26)" is evaluated during BM blocking.	
Fault	Fault " E47-BM blocking (page 29)" is evaluated during BM blocking.	

### 7.4.7 FLUX BRAKING

Group of parameters number [774]
Flux Braking function settings parameters.
Flux braking is used for braking the drive when brake resistor is not connected, or to reinforce and complement other modes of braking.

MENU \SETTINGS \CONTROL AND REGULATION \FLUX BRAKING

Name [ID]	Description	Def.
Flux braking   (FB) [775]	Turning on the Flux braking (FB) operation. Flux braking helps to decrease the amount of energy flowing back to the frequency converter by converting a part of the energy to motor heat. When increasing the DC-link voltage beyond the limit of Operating voltage FB [776] (page 46) then the motor excitation (V/f slope or magnetic flux) increases with an intensity proportional to the gain Flux braking gain [777] (page 46). Higher current flows in the motor. Because of this, the drive with this braking mode should be sufficiently temperature resistant or protected.	urned
Turned off	Flux braking is turned off.	
Turned on	Flux braking is turned on.	
Operating    voltage FB   $[776]$	Flux braking operating voltage.	580.0 V
Undervoltage ${ }^{1}$ Overvoltage ${ }^{2}$	Value of the DC-link voltage, when the flux braking begins to operate. ${ }^{1}$ Refer to chapter 3.1 Undervoltage, overvoltage (str. 13) by product type. ${ }^{2}$ Refer to chapter 3.1 Undervoltage, overvoltage (str. 13) by product type.	
```Flux braking gain [777]```	Setting the gain of the flux brake.	0.20
$0.00 \div 10.00$	Too high gain can cause excessive rise of the motor current, up to fault " E11-Overcurrent (page 27)". Flux brake function is inactive when zero value is set. Correct value is selected as a compromise, so that the braking is reliable and the motor current is not unnecessarily high.	
Filter FB [1179]	Time constant of the flux brake filter on the FB output signal.	100 ms
$1 \mathrm{~ms} \div 10000 \mathrm{~ms}$	It helps to adjust the flux braking dynamics. In case of slow reactions, it is necessary to increase time constant of the filter and vice versa, when oscillations occur, decrease it.	

7.4.8 POWER RESTRICTION

Group of parameters number [811]
Converter power restriction conditions setting. Power restriction is used for keeping the drive in operation during extreme load or thermal conditions.

MENU \SETTINGS \CONTROL AND REGULATION \POWER RESTRICTION

Name [ID]	Description	ef.
Power restriction (PR) [766]	starts decreasing the current restriction and prevents the occurrence of faults that could stop the drive operation. If it is necessary to keep the converter operating even in adverse temperature or load conditions, it is necessary to activate the power restriction mode.	
	After exceeding the converter overload Thermal integral INV [31] (page 21) beyond the 90% value, power will be restricted.	
	After exceeding the temperature Cooler temperature [74] (page 20) beyond the value set by the parameter Cooler temperature warning [767] (page 77), power will be restricted.	
	After exceeding the motor overload Thermal integral MT [33] (page 21) beyond the 90\% value, power will be restricted.	
	After exceeding the temperature ETP Temperature [869] (page 19) evaluated from an external temperature sensor, power will be restricted.	
	Converter power restriction after exceeding the parameter value PR Signal [1088] (page 46) beyond the value PR signal limit [1089] (page 47).	
PR Sig	Selection of the signal, according to which the power will be restricted by an active selection of the power restriction source Power restriction (PR) [766] (page 46) - from the power restriction signal	

Name [ID]	Description	Def.
Signal		
$\begin{array}{\|lll} \hline \text { PR } & \text { signal } & \text { limit } \\ {[1089]} \end{array}$	Signal limit PR Signal [1088] (page 46), beyond which the converter ${ }_{0.00 \mathrm{~Hz}}$ restricts the power.	
$\begin{aligned} & 0.00 \quad \div \quad \text { Max } \\ & \text { frequency [111] } \end{aligned}$		
P gain PR [1090]	Gain value of the power restriction (PR) controllers proportional term.	0000
$\begin{aligned} & -1000.0000 \\ & 1000.0000 \end{aligned}$	PR controller works only when using the PR source active selection from the power restriction signal. If the proportional gain is negative, then regulation error is inverted.	
I gain PR [1091]	Integration time constant value of the power restriction (PR) controllers 1.00 sproportional term.	
$0.00 \mathrm{~s} \div 1000.00 \mathrm{~s}$	PR controller works only when using the PR source active selection from the power restriction signal.	

7.5 INPUTS AND OUTPUTS

Group of parameters number [216]
Setting of the control, digital and analog inputs and outputs of converter.

7.5.1 BINARY INPUTS

Group of parameters number [143]
Binary (digital) inputs setting.
MENU \SETTINGS \INPUTS AND OUTPUTS \BINARY INPUTS

Name [ID]	Description	Def.
BIN HW Type [172]	Binary inputs hardware evaluation setting. The evaluation covers all digital inputs simultaneously.	24 V Level
OV Level	Individual binary inputs $\mathrm{X} 1: 1, \mathrm{X} 1: 2, \mathrm{X} 1: 3, \mathrm{X} 1: 4, \mathrm{X} 1: 5, \mathrm{X} 1: 6$ are active when 0 V connected (Terminal X1:10).	voltage is
24 V Level	Individual binary inputs $\mathrm{X} 1: 1, \mathrm{X} 1: 2, \mathrm{X} 1: 3, \mathrm{X} 1: 4, \mathrm{X} 1: 5, \mathrm{X} 1: 6$ are active when 24 V connected (Terminal X1:8).	voltage is
$\begin{array}{\|ll\|} \hline \text { BIN1 } & \text { Filter } \\ {[178]} & \\ \hline \end{array}$	Time constant of the binary signal filter.	10 ms
$\left\lvert\, \begin{array}{ll} 0 \quad \mathrm{~ms} \\ 30000 \mathrm{~ms} \end{array}\right.$	Binary input is switched on when the voltage level defined by parameter BIN HW (page 47) is present longer than the value of this parameter and is switched off when is not present longer than the value of this parameter.	ype [172] evoltage
BIN1 Logic $[716]$	Determines the binary input evaluation mode. Binary input hardware settings need to be taken into account.	Direct
Direct	If the HW Type is set to 24 V , then the BIN is active if there is 24 V on the input. If the H set to 0 V , then the BIN is active on 0 V .	W Type is
Inverted	If the HW Type is set to 24 V , then the BIN is active by 0 V . If the HW Type is set to 0 BIN is active by 24 V .	
$\begin{array}{\|l\|} \hline \text { BIN2 Filter } \\ \text { [179] } \\ \hline \end{array}$	Time constant of the binary signal filter.	10 ms
$\left\lvert\, \begin{array}{cc} 0 \mathrm{~ms} \\ 30000 \mathrm{~ms} \end{array}\right.$	Binary input is switched on when the voltage level defined by parameter BIN HW (page 47) is present longer than the value of this parameter and is switched off when is not present longer than the value of this parameter.	Type [172] he voltage
$\begin{array}{\|l\|} \hline \text { BIN2 Logic } \\ {[717]} \end{array}$	Determines the binary input evaluation mode. Binary input hardware settings need to be taken into account.	Direct
Look chois	s of parameter's BIN1 Logic [716] (page 47)	
$\begin{array}{\|l\|l\|} \hline \text { BIN3 Filter } \\ \text { [180] } \end{array}$	Time constant of the binary signal filter.	10 ms
$\left\lvert\, \begin{array}{cc} 0 \quad \mathrm{~ms} \\ 30000 \mathrm{~ms} \end{array}\right.$	Binary input is switched on when the voltage level defined by parameter BIN HW (page 47) is present longer than the value of this parameter and is switched off when is not present longer than the value of this parameter.	Type [172] the voltage
BIN3 Logic [718]	Determines the binary input evaluation mode. Binary input hardware settings need to be taken into account.	Direct
Look choises of parameter's BIN1 Logic [716] (page 47)		

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
$\begin{aligned} & \begin{array}{l} \text { BIN4 Filter- } \\ \text { [181] } \end{array} \\ & \hline \end{aligned}$	Time constant of the binary signal filter.	10 ms
$\begin{array}{ll} 0 & \mathrm{~ms} \\ 30000 \mathrm{~ms} \end{array}$	Binary input is switched on when the voltage level defined by parameter BIN HW (page 47) is present longer than the value of this parameter and is switched off when the is not present longer than the value of this parameter.	Type [172] the voltage
$\begin{aligned} & \text { BIN4 Logic } \\ & {[719]} \end{aligned}$	Determines the binary input evaluation mode. Binary input hardware settings need to be taken into account.	Direct
Look choises of parameter's BIN1 Logic [716] (page 47)		
$\begin{array}{\|l\|} \hline \text { BIN5 } \\ \hline[182] \end{array}$	Time constant of the binary signal filter.	10 ms
$\left\lvert\, \begin{array}{lc} 0 & \mathrm{~ms} \\ 30000 \mathrm{~ms} \end{array}\right.$	Binary input is switched on when the voltage level defined by parameter BIN HW (page 47) is present longer than the value of this parameter and is switched off when the is not present longer than the value of this parameter.	Type [172] the voltage
$\begin{aligned} & \text { BIN5 Logic } \\ & {[720]} \end{aligned}$	Determines the binary input evaluation mode. Binary input hardware settings need to be taken into account.	Direct
Look choises of parameter's BIN1 Logic [716] (page 47)		
BIN6 Filter [183]	Time constant of the binary signal filter.	10 ms
$\begin{aligned} & 0 \mathrm{~ms} \\ & 30000 \mathrm{~ms} \end{aligned} \div$	Binary input is switched on when the voltage level defined by parameter BIN HW (page 47) is present longer than the value of this parameter and is switched off when the is not present longer than the value of this parameter.	Type [172] the voltage
$\begin{aligned} & \text { BIN6 Logic } \\ & {[721]} \end{aligned}$	Determines the binary input evaluation mode. Binary input hardware settings need to be taken into account.	Direct
Look choises of parameter's BIN1 Logic [716] (page 47)		

7.5.2 ANALOG INPUTS

Group of parameters number [144]
Settings of the analog inputs, which are used for input, setting or continuous measurement of signals like frequency setpoint, pressure, fluid level etc.

AIN1

Group of parameters number [147]
First analog input.

MENU \SETTINGS \INPUTS AND OUTPUTS \ANALOG INPUTS \AIN1

Name [ID]	Description	Def.
$\begin{aligned} & \text { AIN1 } \\ & \text { Type } \\ & \text { [153] } \end{aligned}$	Analog input type.	0-10V
0-10V	Analog input level corresponds with the voltage, which is measured between the terminals $\mathrm{X} 1: 11$ and $\mathrm{X} 1: 12$ in the 0 to $10 \mathrm{~V}(\sim 0$ až 100\%) DC range.	
2-10V	Analog input level corresponds with the voltage, which is measured between the terminals X1:11 and $\mathrm{X} 1: 12$ in the 2 to $10 \mathrm{~V}(\sim 0$ až $100 \%) \mathrm{DC}$ range. If this voltage drops under the 2 V limit, the frequency converter generates the fault " E25-Interrupted AIN1 (page 28)". Fault evaluation can be turned off using AIN Fault [837] (page 74).	
0-20mA	Analog input level corresponds with the current, which is measured between the terminals $\times 1: 11$ and $\mathrm{X} 1: 12$ in the 0 to $20 \mathrm{~mA}(\sim 0$ až $100 \%)$ range.	
4-20mA	Analog input level corresponds with the current, which is measured between the terminals X1:11 and $\mathrm{X} 1: 12$ in the 4 to $20 \mathrm{~mA}(\sim 0$ azz $100 \%)$ range. If this voltage drops under the 4 mA limit, the frequency converter generates the fault " E25-Interrupted AIN1 (page 28)". Fault evaluation can be turned off using AIN Fault [837] (page 74).	
$\begin{array}{\|l\|l} \hline \text { AIN1 } \\ \text { Filter } \\ {[254]} \\ \hline \end{array}$	Time constant of first-order filter of the analog input.	100 ms
$\begin{aligned} & 0 \mathrm{~ms} \\ & 30000 \end{aligned}$		

Name [ID]	Description	Def.
ms		

SPECIAL SETTING AIN1

Group of parameters number [150]
Analog input mapping setting for the selected parameter. Value of this parameter will be affected by the analog input value.

MENU \SETTINGS \INPUTS AND OUTPUTS \ANALOG INPUTS \AIN1 \SPECIAL SETTING AIN1

Name [ID]	Description	Def.	
AIN1 Signal [251]	Selection of the signal that will be linearly recalculated according to the analog input.	-	
Signal		-	
Signal [253]	AIN1_A)	Signal value for the analog input level at point A.	-
$-\div-$		-	
Signal [252]	AIN1_B)	Signal value for the analog input level at point B.	0.00 V
$-\div-$		10.00	
AIN1_A [949]	Analog input level at point A.	V	
$0.00 \mathrm{~V} \div 10.00 \mathrm{~V}$			
AIN1_B [950]	Analog input level at point B.		
$0.00 \mathrm{~V} \div 10.00 \mathrm{~V}$			

AIN2

Group of parameters number [149]
Second analog input.
MENU \SETTINGS \INPUTS AND OUTPUTS \ANALOG INPUTS \AIN2

Name [ID]	Description	Def.
$\begin{array}{\|l} \hline \text { AIN2 } \\ \text { Type } \\ {[154]} \end{array}$	Analog input type.	0-10 V
0-10 V	Analog input value corresponds with the voltage, which is measured between the terminals $\mathrm{X} 1: 13$ and $\mathrm{X} 1: 14$ in the 0 V to 10 V DC range.	
2-10 V	Analog input value corresponds with the voltage, which is measured between the terminals X1:13 and $\mathrm{X} 1: 14$ in the 2 V to 10 V DC range. If this voltage drops under the 2 V limit, the frequency converter generates the fault " E26-Interrupted AIN2 (page 28)". Fault evaluation can be turned off using AIN Fault [837] (page 74).	
0-20 mA	Analog input value corresponds with the current, which is measured between the terminals X1:13 and $\mathrm{X} 1: 14$ in the 0 to 20 mA range.	
4-20 mA	Analog input value corresponds with the current, which is measured between the terminals X1:13 and $\mathrm{X} 1: 14$ in the 4 to 20 mA range. If this voltage drops under the 4 mA limit, the frequency converter generates the fault " E26-Interrupted AIN2 (page 28)". Fault evaluation can be turned off using AIN Fault [837] (page 74).	
$\begin{array}{\|l} \hline \text { AIN2 } \\ \text { Filter } \\ {[262]} \end{array}$	Time constant of first-order filter of the analog input.	100 ms
$\begin{aligned} & 0 \mathrm{~ms} \\ & 30000 \\ & \mathrm{~ms} \end{aligned}$		

SPECIAL SETTING AIN2

Group of parameters number [155]
Analog input mapping setting for the selected parameter. Value of this parameter will be affected by the analog input value.

MENU \SETTINGS \INPUTS AND OUTPUTS \ANALOG INPUTS \AIN2 \SPECIAL SETTING AIN2

AIN3

Group of parameters number [148]
Third analog input. Not available for the UNIFREM 400 M converter.
MENU \SETTINGS \INPUTS AND OUTPUTS \backslash ANALOG INPUTS \backslash AIN3

Name [ID]	Description	Def.
$\begin{array}{\|l\|} \hline \text { AIN3 } \\ \text { Type } \\ \text { [268] } \\ \hline \end{array}$	Analog input type.	0-10 V
0-10 V	Analog input level corresponds with the voltage, which is measured between the terminals $\times 1: 15$ and $\mathrm{X} 1: 16$ in the 0 to 10 V DC range.	
2-10 V	Analog input level corresponds with the voltage, which is measured between the terminals $\times 1: 15$ and $\mathrm{X} 1: 16$ in the 2 to 10 V DC range. If this voltage drops under the 2 V limit, the frequency converter generates the fault " E27-Interrupted AIN3 (page 28)". Fault evaluation can be turned off using AIN Fault [837] (page 74).	
0-20 mA	Analog input level corresponds with the current, which is measured between the terminals $\times 1: 15$ and $\mathrm{X} 1: 16$ in the 0 to 20 mA range.	
4-20 mA	Analog input level corresponds with the current, which is measured between the terminals X1:15 and $\mathrm{X} 1: 16$ in the 4 to 20 mA range. If this voltage drops under the 4 mA limit, the frequency converter generates the fault " E27-Interrupted AIN3 (page 28)". Fault evaluation can be turned off using AIN Fault [837] (page 74).	
$\begin{array}{\|l\|l} \hline \text { AIN3 } \\ \text { Filter } \\ \text { [272] } \\ \hline \end{array}$	Time constant of first-order filter of the analog input	100 ms
$\begin{aligned} & 0 \mathrm{~ms} \\ & 30000 \\ & \mathrm{~ms} \end{aligned}$		

SPECIAL SETTING AIN3

Group of parameters number [156]
Analog input mapping setting for the selected parameter. Value of this parameter will be affected by the analog input value.

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
AlN3 Signal [269]	Selection of the signal that will be linearly recalculated according to the analog input.	-
Signal		-
Signal [270]	(AIN3_A)	Signal value for the analog input level at point A.
$-\div-$		-
Signal [271]	(AIN3_B)	Signal value for the analog input level at point B.
$-\div-$		0.00 V
AlN3_A [953]	Analog input level at point A.	10.00
$0.00 \mathrm{~V} \div 10.00 \mathrm{~V}$		V
AlN3_B [954]	Analog input level at point B.	
$0.00 \mathrm{~V} \div 10.00 \mathrm{~V}$		

AIN4

Group of parameters number [152]
Fourth analog input. Not available for the UNIFREM 400 M converter.
MENU \SETTINGS \INPUTS AND OUTPUTS \backslash ANALOG INPUTS \backslash AIN4

Name [ID]	Description	Def.
$\begin{aligned} & \text { AIN4 } \\ & \text { Type } \\ & {[274]} \end{aligned}$	Analog input type.	0-10 V
0-10 V	Analog input value corresponds with the voltage, which is measured between the terminals X1:17 and $\mathrm{X} 1: 18$ in the 0 to 10 V DC range.	
2-10 V	Analog input value corresponds with the voltage, which is measured between the terminals X1:17 and $\mathrm{X} 1: 18$ in the 2 to 10 V DC range. If this voltage drops under the 2 V limit, the frequency converter generates the fault " E28-Interrupted AIN4 (page 28)". Fault evaluation can be turned off using AIN Fault [837] (page 74).	
0-20 mA	Analog input value corresponds with the current, which is measured between the terminals $\times 1: 17$ and $\mathrm{X} 1: 18$ in the 0 to 20 mA range.	
4-20 mA	Analog input value corresponds with the current, which is measured between the terminals $\times 1: 17$ and $\mathrm{X} 1: 18$ in the 4 to 20 mA range. If this voltage drops under the 4 mA limit, the frequency converter generates the fault " E28-Interrupted AIN4 (page 28)". Fault evaluation can be turned off using AIN Fault [837] (page 74).	
$\begin{array}{\|l\|} \hline \text { AIN4 } \\ \text { Filter } \\ {[278]} \\ \hline \end{array}$	Time constant of first-order filter of the analog input.	100 ms
$\begin{aligned} & 0 \mathrm{~ms} \\ & 30000 \\ & \mathrm{~ms} \end{aligned}$		

SPECIAL SETTING AIN4

Group of parameters number [199]
Analog input mapping setting for the selected parameter. Value of this parameter will be affected by the analog input value.

MENU \SETTINGS \INPUTS AND OUTPUTS \ANALOG INPUTS \backslash AIN4 \SPECIAL SETTING AIN4

Name [ID]	Description	Def.
AlN4 Signal [275]	Selection of the signal that will be linearly recalculated according to the analog input.	-
Signal		-
Signal [276]	(AIN4_A)	Signal value for the analog input level at point A.

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
$-\div-$		-
Signal $[277]$$\quad$ (AIN4_B)	Signal value for the analog input level at point B.	
$-\div-$		0.00 V
AIN4_A [955]	Analog input level at point A.	10.00
$0.00 \mathrm{~V} \div 10.00 \mathrm{~V}$		V
AIN4_B [956]	Analog input level at point B.	
$0.00 \mathrm{~V} \div 10.00 \mathrm{~V}$		

7.5.3 RELAY OUTPUTS

Group of parameters number [146]
Relay outputs setting, which can be used for signalization of discrete values and events of the converter, e.g. fault, run, setpoint achieved.

Relay 1

Group of parameters number [186]
Relay 1 setting. Relay is connected to the terminals: NC - X2:25, COM - X2:26, NO - X2:27 (NC - X2:24, COM - X2:25, NO - X2:26 for UNIFREM 400 M).

MENU \SETTINGS \INPUTS AND OUTPUTS \RELAY OUTPUTS \RELAY 1

Name [ID]	Description	Def.
$\begin{array}{\|ll\|} \hline \begin{array}{ll} \text { R1 } \\ {[697]} \end{array} & \text { Source } \\ \hline \end{array}$	Relay switching function setting.	Motor operation
Motor operation	Relay will switch on when the converter is in start (running).	
Ready	Relay will switch on when the converter is READY.	
Fault	Relay wil switch on when the fault in the converter occurs.	
Brake	Relay will switch on when the mechanical brake function is activated, please see [517] (page 72).	
F=zel	Relay will switch on after reaching the setpoint frequency.	
Special	Relay will switch on after satisfying the conditions in the submenu SPECIAL SETTING.	
$\begin{array}{\|l\|l\|} \hline \text { R1 } \quad \text { switch-on } \\ \hline \text { time }[307] \end{array}$	The relay switch-on time delay.	0.00 s
$\begin{aligned} & \hline 0.00 \mathrm{~s} \\ & 3600.00 \mathrm{~s} \end{aligned}$	After establishment of the switch condition, the relay will switch-on after a selected amount of time.	
$\begin{array}{\|l\|} \hline \text { R1 } \\ \hline \\ \hline \end{array}$	The relay switch-off time delay.	0.00 s
$\begin{array}{ll} \hline 0.00 \mathrm{~s} \\ 3600.00 \mathrm{~s} \end{array}$	After termination of the switch condition, the relay will switch-off after a selected amount of time.	
R1 Logic [755]	Determines the relay output evaluation mode. The condition will be evaluated first, then the switch times will be evaluated and the relay logic will be Dire evaluated last.	
Direct	If the switch conditions are met, the relay will switch on.	
Inverted	If the switch conditions are met, the relay will switch off.	

SPECIAL SETTING R1

Group of parameters number [221]
Special function setting for relay 1. R1 Source [697] (page 52) must be chosen as "Special".
MENU \SETTINGS \INPUTS AND OUTPUTS \RELAY OUTPUTS \RELAY 1 \SPECIAL SETTING R1

Name [ID]	Description	Def.		
R1 Signal [189]	Signal that is evaluated for the relay switch. Either numeric or discrete signal can be chosen.	(76] state		
Signal				
R1 switch-on	Conditions for R1 switch-on.	Run		

UNIFREM VF v.2.41x

Name [ID]	Description	Def.		
[301]				
Look choises of parameter's Converter state [76] (page 20)				
R1 switch-off [309]	Conditions for R1 switch-off.			
Look choises of parameter's Converter state [76] (page 20)				

Relay 2

Group of parameters number [187]
Relay 2 setting. Relay is connected to the terminals: NC - X2:28, COM - X2:29, NO - X2:30 (NC - X2:21, COM - X2:22, NO - X2:23 for UNIFREM 400 M).

MENU \SETTINGS \INPUTS AND OUTPUTS \RELAY OUTPUTS \RELAY 2

Name [ID]	Description	Def.
R2 Source [698]	Relay switching function setting. Functionality is the same as RELAY 1 R1 Source [697] (page 52).	ault
Look choises of parameter's R1 Source [697] (page 52)		
$\begin{array}{\|l\|} \hline \text { R2 } \quad \text { switch-on } \\ \text { time [316] } \\ \hline \end{array}$	Relay switch-on time delay.	0.00 s
$\begin{aligned} & 0.00 \mathrm{~s} \\ & 3600.00 \mathrm{~s} \end{aligned}$	After establishment of the switch condition, the relay will switch-on after a selected amount of time.	
R2 switch-off time [317]	Relay switch-off time delay.	0.00 s
$\begin{aligned} & 0.00 \mathrm{~s} \\ & 3600.00 \mathrm{~s} \end{aligned}$	If the switch condition is no longer valid, the relay remains switched on for a selected amount of time.	
R2 Logic [756]	Determines the relay output evaluation mode. The condition will be evaluated first, then the switch times will be evaluated and the relay logic will be evaluated last.	Direct
Direct	If the switch conditions are met, the relay will switch on.	
Inverted	If the switch conditions are met, the relay will switch off.	

SPECIAL SETTING R2

Group of parameters number [223]
Special function setting for relay 2. R2 Source [698] (page 53) must be chosen as "Special".
MENU \SETTINGS \INPUTS AND OUTPUTS \RELAY OUTPUTS \RELAY 2 \ SPECIAL SETTING R2

Name [ID]	Description	Def.
R2 Signal [311]	Signal that is evaluated for the relay switch. Either numeric or discrete signal can be chosen.	 [76] Converter state
Signal		
R2 [313] switch-on	Conditions for R2 switch-on.	Fault
Look choises of parameter's Converter state [76] (page 20)		
R2 [314]	Conditions for R2 switch-off.	
Look choises of parameter's Converter state [76] (page 20)		

Relay 3

Group of parameters number [188]
Relay 3 setting. Not available for the UNIFREM 400 M VF converter. Relay is connected to the terminals: NC - X2:31, COM - X2:32, NO - X2:33.

MENU \SETTINGS \INPUTS AND OUTPUTS \RELAY OUTPUTS \RELAY 3

Name [ID]	Description	Def.
R3 Source [699]	Relay switching function setting. Functionality is the same as RELAY 1 R1 Source [697]	Ready
Look choises of parameter's R1 Source [697] (page 52)		

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
$\begin{array}{\|l} \hline \text { R3 switch-on } \\ \text { time [324] } \end{array}$	Relay switch-on time delay.	0.00 s
$\begin{aligned} & 0.00 \mathrm{~s} \\ & 3600.00 \mathrm{~s} \end{aligned}$	After establishment of the switch condition, the relay will switch-on after a selected amount of time.	
$\begin{array}{\|l} \hline \text { R3 switch-off } \\ \text { time [325] } \\ \hline \end{array}$	Relay switch-off time delay.	0.00 s
$\begin{aligned} & 0.00 \mathrm{~s} \\ & 3600.00 \mathrm{~s} \end{aligned}$	If the switch condition is no longer valid, the relay remains switched on for a selected amount of time.	
R3 Logic [757]	Determines the relay output evaluation mode. The condition will be evaluated first, then the switch times will be evaluated and the relay logic will be evaluated last.	Direct
Direct	If the switch conditions are met, the relay will switch on.	
Inverted	If the switch conditions are met, the relay will switch off.	

SPECIAL SETTING R3

Group of parameters number [226]
Special function setting for relay 3. R3 Source [699] (page 53) must be chosen as "Special". Not available for the UNIFREM 400 M converter.

MENU \SETTINGS \INPUTS AND OUTPUTS \RELAY OUTPUTS \RELAY 3 \ SPECIAL SETTING R3

Name [ID]	Description	Def.
R3 Signal [320]	Signal that is evaluated for the relay switch. Either numeric or discrete signal can be chosen.	li6] state
Signal	Converter R3 switch-on [321]	
Conditions for R3 switch-on.	Ready	
R3 choises of parameter's Converter state [76] (page 20) [322]		
Look choises of parameter's Converter state [76] (page 20)	Conditions for R3 switch-off.	

7.5.4 ANALOG OUTPUTS

Group of parameters number [145]
Analog outputs settings. Analog outputs are used to transfer continuous signals and quantities of the converter to superior control and diagnostic systems such as display units, PLC or measuring instruments.

A01

Group of parameters number [370]
First analog output is connected to the terminal: Plus - X1:19, Minus - X1:20 (Plus - X1:15, Mínus - X1:16 for UNIFREM 400 M).

MENU \SETTINGS \INPUTS AND OUTPUTS \ANALOG OUTPUTS \AO1

Name [ID]	Description	Def.		
AO1 Type [358]	Analog output type.	$0-20 \mathrm{~mA}$		
Turned off	Analog output is turned off. The output is 0mA.			
$0-20 \mathrm{~mA}$	Analog output operates in the 0-20mA range.			
$4-20 \mathrm{~mA}$	Analog output operates in the 4-20mA range.			
AO1 Source [1076]	Analog output quantity selection.	Freq. INV abs.		
Freq. INV abs.	The output value is taken from Freq. INV abs. [472] (page 15).			
MT Current	The output value is taken from Current [42] (page 15).			
Power	The output value is taken from Power [66] (page 15).			
ETP Current	The output value is taken from ETP Current [870] (page 19).			
Torque	The output value is taken from Torque [69] (page 15).			
Special	The output value is taken from Special signal AOx.			
Signal (AO1_A) [360]	Signal value for the analog output level at point A.	0.00 Hz		
$0.00 \div$ Max. frequency [111]				

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
Signal (AO1_B) [361]	Signal value for the analog output level at point B.	50.00 Hz
$0.00 \div$ Max. frequency [111]		
AO1_A [941]	Analog output level at point A.	0.00 mA
$0.00 \mathrm{~mA} \div 20.00 \mathrm{~mA}$		
AO1_B [942]	Analog output level at point B.	20.00 mA
$0.00 \mathrm{~mA} \div 20.00 \mathrm{~mA}$		
AO1 Signal [359]	Selection of special signal for the analog output.	[472] Freq. INV abs.
Signal		

AO2

Group of parameters number [371]
Second analog output is connected to the terminal: Plus - X1:21, Minus - X1:22 (Plus - X1:17, Minus - X1:16 for UNIFREM 400 M).

MENU \SETTINGS \INPUTS AND OUTPUTS \ANALOG OUTPUTS \AO2

Name [ID]	Description	Def.
AO2 Type [362]	Analog output type. Configuration possibilities are the same as in AO 1 AO1 Type [358] (page 54).	0-20mA
Look choises of parameter's AO1 Type [358] (page 54)		
AO2 Source [1077]	Analog output quantity selection. Configuration possibilities are the same as in AO 1 AO1 Source [1076] (page 54).	MT Current
Look choises of parameter's AO1 Source [1076] (page 54)		
$\begin{aligned} & \hline \text { Signal } \\ & \text { [306] } \end{aligned}$	Signal value for the analog output level at point A.	0.00 A
$0.00 \div 1_{\text {NK2 }}{ }^{4}$	${ }^{4}$ The value depends on the inverter power line. See installation manual.	
$\begin{aligned} & \hline \text { Signal } \quad \text { (AO2_B) } \\ & \text { [368] } \end{aligned}$	Signal value for the analog output level at point B.	6.00 A
$0.00 \div 1_{\text {Nк2 }}{ }^{4}$	${ }^{4}$ The value depends on the inverter power line. See installation manual.	
AO2_A [945]	Analog output level at point A .	0.00 mA
$\begin{aligned} & 0.00 \mathrm{~mA} \div 20.00 \\ & \mathrm{~mA} \end{aligned}$		
AO2_B [946]	Analog output level at point B.	20.00 mA
$\begin{aligned} & 0.00 \mathrm{~mA} \div 20.00 \\ & \mathrm{~mA} \end{aligned}$		
AO2 Signal $[364]$	Selection of the signal that will linearly recalculate the analog output.	[42] Current
Signal		

AO3

Group of parameters number [372]
Third analog output is connected to the terminal: Plus - X1:23, Minus - X1:24. Not available for the UNIFREM 400 M converters.

MENU \SETTINGS \backslash INPUTS AND OUTPUTS \backslash ANALOG OUTPUTS \backslash AO3

Name [ID]	Description	Def.
AO3 Type	Analog output type. Configuration possibilities are the same as in AO 1 AO Type [358] (page 54).	20
Look choises of parameter's AO1 Type [358] (page 54)		
AO3 Sourc $[1078]$	Analog output quantity selection. Configuration possibilities are the same as AO 1 AO1 Source [1076] (page 54).	Power
Look choises of parameter's AO1 Source [1076] (page 54)		
Signal (AO3_A) Signal value for the analog output level at point A.		

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
[367]		
-3E9 W - 3E9 W		
$\begin{aligned} & \text { Signal } \quad \text { (AO3_B) } \\ & \text { [369] } \end{aligned}$	Signal value for the analog output level at point B.	$\begin{aligned} & 6000.0 \\ & \mathrm{~W} \end{aligned}$
-3E9 W $~+3 \mathrm{E9}$ W		
AO3_A [947]	Analog output level at point A.	0.00 mA
$\begin{aligned} & 0.00 \mathrm{~mA} \div 20.00 \\ & \mathrm{~mA} \\ & \hline \end{aligned}$		
AO3_B [948]	Analog output level at point B.	$\begin{aligned} & 20.00 \\ & \mathrm{~mA} \end{aligned}$
$\begin{aligned} & 0.00 \mathrm{~mA} \div 20.00 \\ & \mathrm{~mA} \end{aligned}$		
AO3 Signa $[365]$	Selection of the signal that will linearly recalculate the analog output.	[66] Power
Signal		

7.6 FUNCTIONS

Group of parameters number [532]
Setting an selection of different optional functions of the UNIFREM frequency converter.

7.6.1 PLC FUNCTIONS

Group of parameters number [315]
Built-in numerical and logical blocks, replacing the need for a simple control system.

LOGICAL BLOCKS

Group of parameters number [166]
Building logical links between the signals. First two logical blocks are fast (they respond in 1ms), other logical blocks respond in 10 ms .

LB Timing

Group of parameters number [1024]
LB time delay setting.
MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \ LOGICAL BLOCKS \LB TIMING

Nam	Description	f.
	LB on delay time. It is necessary to select the LB in parameter LB for on delay 1 [1033] (page 56), which this time is designated for.	
$0.00 \mathrm{~s} \div 7200.00 \mathrm{~s}$		
$\begin{array}{\|l\|} \hline \text { LB for on delay 1 } \\ \text { [1033] } \end{array}$	Selecting the logical blocks, which the defined on delay time On delay 1 [1025] (page 56) is applied to.	
Look choises of parameter's Logical blocks [8] (page 17)		
On delay 2 [1026]	LB on delay time. It is necessary to select the LB in parameter LB for on delay 2 [1034] (page 56), which this time is designated for.	$\begin{aligned} & 0.00 \\ & \mathrm{~s} \end{aligned}$
$0.00 \mathrm{~s} \div 7200.00 \mathrm{~s}$		
$\begin{aligned} & \hline \text { LB for on delay 2 } \\ & \text { [1034] } \end{aligned}$	Selecting the logical blocks, which the defined on delay time On delay 2 [1026] (page 56) is applied to.	
Look choises of par	arameter's Logical blocks [8] (page 17)	
On delay 3 [1027]	LB on delay time. It is necessary to select the LB in parameter LB for on delay 3 [1035] (page 56), which this time is designated for.	$\begin{aligned} & 0.00 \\ & s \end{aligned}$
$0.00 \mathrm{~s} \div 7200.00 \mathrm{~s}$	Selecting the logical blocks, which the defined on delay time On delay 3 [1027] (page 56) is applied to.	
$\begin{aligned} & \hline \text { LB for on delay } 3 \\ & \text { [1035] } \end{aligned}$		
Look choises of parameter's Logical blocks [8] (page 17)		
On delay 4 [1028]	LB on delay time. It is necessary to select the LB in parameter LB for on delay $4 \mid 0.00$	

UNIFREM VF v.2.41x

LB Reset

Group of parameters number [1041]
LB reset setting. Selected LB are reseted to the default status.

MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \ LOGICAL BLOCKS \LB RESET

Name [ID]	Description	Def.
LB Reset [1045]	Selecting the logical blocks for which the reset is applied.	
Look choises of parameter's Logical blocks [8] (page 17)		
LB Reset signal [1042]	Selecting the signal for the LB Reset. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
LB Reset active [1043]	Conditions for LB reset activation.	
- --		
LB \quad Reset inactive [1044]	LB reset deactivation: In case of a numeric signal if the signal value is lower than the defined level.	
- -		

LB1 (Fast)

Group of parameters number [167]
First quick logical operation setting (1ms reaction time).
MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \LOGICAL BLOCKS \LB1 (FAST)
Name [ID]

UNIFREM VF v.2.41x

Name [ID]	Description ${ }^{\text {def. }}$
LB1 Operation 625$]$	Logical operation type that will be used for the logical block. OR
OR	Disjunction operation. The output is active if at least one of the inputs is active.
AND	Conjunction operation. Output is active if both inputs are active.
XOR	Exclusive sum operation. Output is active if inputs are different (one active, the other inactive).
RS	RS flip-flop. Output is set to inactive if the first input is active. Output is set to active if the second input is active.
$=$	Operation equals. Output is active if both inputs are identical.
$>=$	Operation greater or equal. Output is active if the first signal is greater than or equals the second signal.
$>$	Operation greater. Output is active if the first signal is greater than the second signal.
LB1 Level [1008]	Input and output type of the logical block.
\square Output	Logical block output will be negated.
Input negated.	First input signal is negated.
$\begin{array}{\|l\|} \hline \begin{array}{l} \text { Input } \\ \text { negated. } \end{array} \\ \hline \end{array}$	Second input signal is negated.
\square Input 1 edge.	First LB input responds to the leading edge of the signal.
\square Input 2 edge.	Second LB input responds to the leading edge of the signal.
LB1_1 Signal [577]	Signal selection for the 1st input of LB1. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.
Signal	
$\begin{aligned} & \text { LB1_1 switch-on } \\ & {[578]} \end{aligned}$	Conditions for switching on the LB1_1.
- --	
LB1_1 off [579] switch-	LB1_1 switch-off: In case of a numeric signal if the signal value is lower than the defined level.

LB1_2 Signal [580]	Signal selection for the 2nd input of LB1. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.
Signal	
LB1_2 switch-on [581]	Conditions for switching on the LB2.
- - -	
	-LB1_2 switch-off: In case of a numeric signal if the signal value is lower than the defined level.

LB2 (Fast)

Group of parameters number [168]
Second quick logical operation setting (1 ms reaction time).
MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \LOGICAL BLOCKS \LB2 (FAST)

Name [ID]	Description	Def.
LB2 Operation [626]	Logical operation type that will be used for the logical block. Configuration possibilities are the same as in LB 1 LB1 Operation [625] (page 58).	OR
Look choises of parameter's LB1 Operation [625] (page 58)		
Look choises of parameter's LB1 Level [1008] (page 58)		
LB2_1 Signal $[583]$	Signal selection for the 1st input of LB2. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		

UNIFREM VF v.2.41x

LB3

Group of parameters number [169]
Third logical operation setting.

MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \LOGICAL BLOCKS \LB3

Name [ID]	Description	Def.
$\begin{array}{\|ll} \hline \text { LB3 } & \text { Operation } \\ {[627]} & \\ \hline \end{array}$	Logical operation type that will be used for the logical block. Configuration possibilities are the same as in LB 1 LB1 Operation [625] (page 58).	OR
Look choises of parameter's LB1 Operation [625] (page 58)		
LB3 Level [1010]	Input and output type of the logical block. Configuration possibilities are the same as in LB 1 LB1 Level [1008] (page 58).	
Look choises of parameter's LB1 Level [1008] (page 58)		
LB3_1 Signal [589]	Signal selection for the 1st input of LB3. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
LB3_1 switch-on [590]	Conditions for switching on the LB3_1.	
- - -		
LB3_1 switch- off [591]	LB3_1 switch-off: In case of a numeric signal if the signal value is lower than the defined level.	
-- -		
LB3_2 Signal [592]	Signal selection for the 2nd input of LB3. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
$\begin{aligned} & \text { LB3_2 switch-on } \\ & \text { [593] } \end{aligned}$	Conditions for switching on the LB3_2.	-
- - -		
LB3_2 off [594]	LB3_2 switch-off: In case of a numeric signal if the signal value is lower than the defined level.	
- - -		

LB4

Group of parameters number [170]
Fourth logical operation setting.
MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \ LOGICAL BLOCKS \LB4

Name [ID]		Description	Def.
LB4	Operation	Logical operation type that will be used for the logical block. Configuration possibilities	OR

UNIFREM VF v.2.41x

LB5

Group of parameters number [171]
Fifth logical operation setting.
MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \LOGICAL BLOCKS \LB5

Name [ID]	Description	Def.
LB5 [629] Operation	Logical operation type that will be used for the logical block. Configuration possibilities are the same as in LB 1 LB1 Operation [625] (page 58).	OR
Look choises of parameter's LB1 Operation [625] (page 58)		
LB5 Level [1012] in LB 1 LB1 Level [1008] (page 58).		
Look choises of parameter's LB1 Level [1008] (page 58)		
$\begin{array}{ll} \hline \text { LB5_1 } & \text { Signal } \\ \hline 601] & \\ \hline \end{array}$	Signal selection for the 1st input of LB5. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
$\begin{aligned} & \text { LB5_1 switch-on } \\ & \text { [602] } \end{aligned}$	Conditions for switching on the LB5_1.	
- - -		
$\begin{aligned} & \hline \text { LB5_1 switch- } \\ & \text { off [603] } \end{aligned}$	LB5_1 switch-off: In case of a numeric signal if the signal value is lower than thedefined level.	
- - -		
$\begin{array}{\|ll\|} \hline \text { LB5_2 } & \text { Signal } \\ \hline 604] & \\ \hline \end{array}$	Signal selection for the 2nd input of LB5. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
$\begin{aligned} & \text { LB5_2 switch-on } \\ & \text { [605] } \\ & \hline \end{aligned}$	Conditions for switching on the LB5_2.	
- - -		
LB5_2 Off [606] switch-	LB5_2 switch-off: In case of a numeric signal if the signal value is lower than the defined level.	

LB6

Group of parameters number [173]
Sixth logical operation setting.

Name [ID]	Description	
$\begin{array}{\|cc\|} \hline \text { LB6 } & \text { Operation } \\ {[630]} & \\ \hline \end{array}$	Logical operation type that will be used for the logical block. Configuration possibilities are the same as in LB 1 LB1 Operation [625] (page 58).	
Look choises of parameter's LB1 Operation [625] (page 58)		
LB6 Level [1013] Input and output type of the logical block. Configuration possibilities are the same as in LB 1 LB1 Level [1008] (page 58).		
Look choises of parameter's LB1 Level [1008] (page 58)		
$\begin{array}{\|ll} \text { LB6_1 }^{\text {[607] }} & \text { Signal } \\ \hline \end{array}$	Signal selection for the 1st input of LB6. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
$\begin{aligned} & \text { LB6_1 switch-on } \\ & {[608]} \end{aligned}$	Conditions for switching on the LB6_1.	

$\begin{array}{\|l\|} \hline \text { LB6_1 } \\ \text { off [609] } \end{array}$	LB6_1 switch-off: In case of a numeric signal if the signal value is lower than the defined level.	
$\div-$		
LB6_2 $[610]$ Signal	Signal selection for the 2nd input of LB6. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
$\text { [611] }{ }^{\text {LB6_2 switch-on }}$	Conditions for switching on the LB6_2.	

$\begin{array}{\|l\|l\|} \hline \text { LB6_2 } \\ \text { off [612] } \end{array} \text { switch- }$	LB6_2 switch-off: In case of a numeric signal if the signal value is lower than the defined level.	

LB7

Group of parameters number [174]
Seventh logical operation setting.
MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \LOGICAL BLOCKS \LB7

Name [ID]	Description	Def.
$\begin{array}{\|ll\|} \hline \text { LB7 } & \text { Operation } \\ {[631]} & \\ \hline \end{array}$	Logical operation type that will be used for the logical block. Configuration possibilities are the same as in LB 1 LB1 Operation [625] (page 58).	OR
Look choises of parameter's LB1 Operation [625] (page 58)		
LB7 Level [1014] input and output type of the logical block. Configuration possibilities are the same as in LB1 Level [1008] (page 58).		
Look choises of parameter's LB1 Level [1008] (page 58)		
LB7_1 Signal $[613]$ Sina	Signal selection for the 1st input of LB7. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
$\begin{aligned} & \text { LB7_1 switch-on } \\ & {[614]} \end{aligned}$	Conditions for switching on the LB7_1.	
- - -		
LB7_1 switch- off [615]	LB7_1 switch-off: In case of a numeric signal if the signal value is lower than the defined level.	
-- -		
LB7_2 Signal $[616]$ [inn	Signal selection for the 2nd input of LB7. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
LB7_2 switch-on	Conditions for switching on the LB7_2.	-

Name [ID]	Description	Def.
$[617]$		
$-\div-$		
LB7_2 off [618]	switch-	LB7_2 switch-off: In case of a numeric signal if the signal value is lower than the defined level.
$-\div-$		
--		

LB8

Group of parameters number [175]
Eight logical operation setting.

Name [ID]	Description	
$\begin{array}{ll} \hline \text { LB8 } & \text { Operation } \\ \hline \text { [632] } \end{array}$	Logical operation type that will be used for the logical block. Configuration possibilities are the same as in LB 1 LB1 Operation [625] (page 58).	
Look choises of parameter's LB1 Operation [625] (page 58)		
LB8 Level [1015] ${ }_{\text {in }}^{\text {In LB } 1 \text { LB1 Level [1008] (page 58). }}$.		
Look choises of parameter's LB1 Level [1008] (page 58)		
$\begin{array}{\|ll} \operatorname{LB8}^{[619]} & \text { Signal } \\ \hline \end{array}$	Signal selection for the 1st input of LB8. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
$\begin{aligned} & \text { LB8_1 switch-on } \\ & {[620]} \end{aligned}$	Conditions for switching on the LB8_1.	
- -		
$\begin{array}{\|l\|} \hline \text { LB8_1 } \\ \text { off [621] } \end{array} \text { switch- }$	LB8_1 switching off: In case of a numeric signal if the signal value is lower than the defined level.	
$\div-$		
LB8_2 $[622$$\quad$ Signal	Signal selection for the 2nd input of LB8. It will be processed according to the selected operation. Either numeric or discrete signal can be chosen.	
Signal		
LB8_2 switch-on [623]	Conditions for switching on the LB8_2.	

$\begin{array}{\|l\|l\|} \hline \text { LB8_2 } \\ \text { off [624] } \end{array} \text { switch- }$	LB8_2 switch-off: In case of a numeric signal if the signal value is lower than the defined level.	
- - -		

NUMERICAL BLOCKS

Group of parameters number [176]
Creating computational links among signals. They react with a delay of 10 ms .

NB1

Group of parameters number [191]
Settings of the first numerical block.

MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \NUMERICAL BLOCKS \NB1

Name [ID]	Description	Def.		
NB1 input [633]	Selection of signal for the 1st input of NB1. This signal will be processed according the selected operation.			
Signal				
NB1 input [634]	Selection of signal for the 2nd input of NB1. This signal will be processed according the selected operation.			
Signal				
NB1	Type of operation used for the numerical block.	plus		

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
$\begin{aligned} & \text { operation } \\ & {[635]} \end{aligned}$		
plus	NB output is calculated as the sum of input signals.	
minus	NB output is calculated as the difference of input signals.	
multiply	NB output is calculated as the product of input signals.	
minimum	NB output is the minimum of input signals.	
maximum	NB output is the maximum of input signals.	
abs	NB output is the absolute value of the first input signal.	
filter	First input signal is filtered by low pass first-order filter, time constant of this the second input value.	this filter is given by
multiplexer	NB output is one of the input signals. If the control signal is inactive, value be used. If the control signal is active, value of the second input will be use	of the first input will d.
integrator	NB output is the integral value of the first input signal. Second input sig value. NB output is saturated according to Output (NBx_A) and Output (NBx	nal is used as gain Bx_B) values.
NB1 control [1279]	This parameter serves for control of numerical block. It serves as a input selector for multiplexer operation. It serves as an enable input for other operations, the operation is performed if enabled, otherwise the previous output sample is used.	Active
Look choises of parameter's Bit1 DS mask [553] (page 38)		
NB1 output Selection of output parameter, to be written to by numerical blok, [1254] according to the linear characteristic set by points A, B.		
Signal		
$\begin{aligned} & \text { NB1_A } \\ & {[1257]} \end{aligned}$	Result of the operation of numerical block at point A.	0.000000000000
-1E18 $~ 1 \mathrm{1E} 18$		
$\begin{aligned} & \hline \text { Output } \\ & \text { (NB1_A) } \\ & {[1255]} \end{aligned}$	The output value corresponding to NB1_A [1257] (page 63).	-
- - -		
$\begin{array}{\|l\|} \hline \text { NB1_B } \\ {[1258]} \\ \hline \end{array}$	Result of the operation of numerical block at point B.	100.000000000000
-1E18 - 1E18		
$\begin{aligned} & \begin{array}{l} \text { Output } \\ \text { (NB1_B) } \\ {[1256]} \end{array} \\ & \hline \end{aligned}$	The output value corresponding to NB1_B [1258] (page 63).	-
- - -		

NB2

Group of parameters number [300]
Settings of the second numerical block.

MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \ NUMERICAL BLOCKS \NB2

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
NB2 output $[1259]$ $S i n$	Selection of output parameter, to be written to by numerical blok, according to the linear characteristic set by points A, B.	
Signal		
NB2_A [1262]	Result of the operation of numerical block at point A.	0.000000000000
-1E18 - 1E18		
$\begin{aligned} & \text { Output (NB2_A) } \\ & {[1260]} \end{aligned}$	The output value corresponding to NB2_A [1262] (page 64).	
- - -		
NB2_B [1263]	Result of the operation of numerical block at point B.	100.000000000000
-1E18 - 1E18		
$\begin{aligned} & \text { Output (NB2_B) } \\ & {[1261]} \end{aligned}$	The output value corresponding to NB2_B [1263] (page 64).	-
- - -		

NB3

Group of parameters number [302]
Settings of the third numerical block.
MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \NUMERICAL BLOCKS \NB3

Name [ID]	Description	Def.
$\begin{array}{\|l\|} \hline \text { NB3 input } 1 \\ {[1016]} \end{array}$	Selection of signal for the 1st input of NB3. This signal will be processed according the selected operation.	
Signal		
NB3 input 2 $[1017]$	2 Selection of signal for the 2nd input of NB3. This signal will be processed according the selected operation.	
Signal		
NB3 operation [1018]	Type of operation used for the numerical block.	plus
Look choises of parameter's NB1 operation [635] (page 62)		
NB3 control $[1281]$	See NB1 control [1279] (page 63).	Active
Look choises of parameter's Bit1 DS mask [553] (page 38)		
NB3 output [1264]	Selection of output parameter, to be written to by numerical blok, according to the linear characteristic set by points A, B.	
Signal		
NB3_A [1267]	Result of the operation of numerical block at point A .	0.000000000000
-1E18 - 1E18		
$\begin{array}{\|l} \hline \text { Output (NB3_A) } \\ \text { [1265] } \end{array}$	The output value corresponding to NB3_A [1267] (page 64).	
-- -		
NB3_B [1268]	Result of the operation of numerical block at point B.	100.000000000000
-1E18 - 1E18		
$\begin{aligned} & \text { Output (NB3_B) } \\ & {[1266]} \end{aligned}$	The output value corresponding to NB3_B [1268] (page 64).	-
- $\div-$		

NB4

Group of parameters number [310]
Settings of the fourth numerical block.

MENU \SETTINGS \FUNCTIONS \PLC FUNCTIONS \ NUMERICAL BLOCKS \NB4

Name [ID]	Description	Def.
NB4 input	1Selection of signal for the 1st input of NB4. This signal will be processed according the selected operation.	
p1020]		

UNIFREM VF v.2.41x

7.6.2 LIMIT SWITCHES

Group of parameters number [875]
Limit switch setting. Setting the limit switches that are used to derive the various control commands (STOP or decelerate) after the specific events.

LS1

Group of parameters number [876]
First limit switch setting
MENU \SETTINGS \FUNCTIONS \LIMIT SWITCHES \LS1

Name [ID]	Description	Def.
LS1 Type [880]	Limit switch type setting	After the switch-on of the LS, the converter reduces the frequency to LSx frequency.
\square Slowing	After the switch-on of the LS, motor will run the track (LSx Track) in the given direction and then stops.	
\square Track + Stop	After the switch-on of the LS, motor stops in the given direction.	
\square Stop	Limit switch responds in the reverse direction only.	
\square For reverse		

Name [ID]	Description	Def.
LS1 $\begin{aligned} & \text { LS } \\ & {[915]}\end{aligned}$	Maximum frequency restriction value when activation the limit switch function set to the "Decelerating" type. Decelerating function will be applied only for the given rotation direction according to the limit switch type.	$\begin{aligned} & 0.00 \\ & \mathrm{~Hz} \end{aligned}$
Min. frequency [110] \div Max. frequency [111]		
LS1 Track [884]	Range track that the converter allows to pass when activating the limit switch function set to the Track + Stop type. Both parameters Transmission ratio [888] (page 30) and Wheel circumference [889] (page 30) need to be set.	m.0000
$\begin{array}{\|lrl\|} \hline 0.0000 & \mathrm{~m} & \div \\ 99000.0000 \mathrm{~m} & \\ \hline \end{array}$		
LS1 Source [895]	Limit switch source setting	None
Look choises of parameter's Quick stop source. [986] (page 33)		
LS1 Mask [896]	The limit switch command will be active if at least one of the selected binary inputs or logical blocks will be active.	
Look choises of parameter's Bit1 DS mask [553] (page 38)		

LS2

Group of parameters number [877]
Second limit switch setting

MENU \SETTINGS \FUNCTIONS \LIMIT SWITCHES \LS2

Name [ID]	Description	Def.
LS2 Type [881]	Limit switch type setting. Configuration possibilities are the same as in LS1 LS1 Type [880] (page 65).	
Look choises of parameter's LS1 Type [880] (page 65)		
$\begin{array}{ll}\text { LS2 } & \text { Frequency } \\ \text { [916] }\end{array}$	Maximum frequency restriction value when activation the limit switch function set to the "Decelerating" type. Decelerating function will be applied only for the given rotation direction according to the limit switch type.	$\begin{aligned} & 0.00 \\ & \mathrm{~Hz} \end{aligned}$
Min. frequency [110] \div Max. frequency [111]		
LS2 Track [885]	Range track that the converter allows to pass when activating the limit switch function set to the Track + Stop type. Both parameters Transmission ratio [888] (page 30) and Wheel circumference [889] (page 30) need to be set.	0.0000 m
$\begin{array}{lll\|} \hline 0.0000 & \mathrm{~m} \\ 99000.0000 \mathrm{~m} \end{array} \quad \div$		
LS2 Source [898]	Limit switch source setting	None
Look choises of parameter's Quick stop source. [986] (page 33)		
LS2 Mask [899]	The limit switch command will be active if at least one of the selected binary inputs or logical blocks will be active.	
Look choises of parameter's Bit1 DS mask [553] (page 38)		

LS3

Group of parameters number [878]
Third limit switch setting
MENU \SETTINGS \FUNCTIONS \LIMIT SWITCHES \LS3

Name [ID]	Description	Def.
LS3 Type [882]	Limit switch type setting. Configuration possibilities are the same as in LS1 LS1 Type [880] (page 65).	
Look choises of parameter's LS1 Type [880] (page 65)	Maximum frequency restriction value when activation the limit switch function set to the "Decelerating" type. Decelerating function will be applied only for the given rotation direction according to the limit switch type.	0.00 Hz
LS3 Frequencin		
[917]		
Min. frequency [110]		

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
$\begin{array}{\|lll} \hline \div & \text { Max. } & \text { frequency } \\ {[111]} & \\ \hline \end{array}$		
LS3 Track [886]	Range track that the converter allows to pass when activating the limit switch function set to the Track + Stop type. Both parameters Transmission ratio [888] (page 30) and Wheel circumference [889] (page 30) need to be set.	0.0000 m
0.0000 m 99000.0000 m \div		
LS3 Source [901]	Limit switch source setting	None
Look choises of parameter's Quick stop source. [986] (page 33)		
LS3 Mask [902]	The limit switch command will be active if at least one of the selected binary inputs or logical blocks will be active.	
Look choises of parameter's Bit1 DS mask [553] (page 38)		

LS4

Group of parameters number [879]
Fourth limit switch setting
MENU \SETTINGS \FUNCTIONS \LIMIT SWITCHES \LS4

Name [ID]	Description	Def.
KS4 Type [883]	Limit switch type setting. Configuration possibilities are the same as in LS1 LS1 Type [880] (page 65).	
Look choises of parameter's LS1 Type [880] (page 65)		
$\begin{array}{ll} \text { LS4 } & \text { Frequency } \\ {[918]} & \end{array}$	Maximum frequency restriction value when activation the limit switch function set to the "Decelerating" type. Decelerating function will be applied only for the given rotation direction according to the limit switch type.	$\left\lvert\, \begin{aligned} & 0.00 \\ & \mathrm{~Hz}\end{aligned}\right.$
Min. frequency [110] \div Max. frequency [111]		
LS4 Track [887]	Range track that the converter allows to pass when activating the limit switch function set to the Track + Stop type. Both parameters Transmission ratio [888] (page 30) and Wheel circumference [889] (page 30) need to be set.	o.0000
0.0000 m 99000.0000 m \div		
LS4 Source [904]	Limit switch source setting	None
Look choises of parameter's Quick stop source. [986] (page 33)		
LS4 Mask [905]	The limit switch command will be active if at least one of the selected binary inputs or logical blocks will be active.	
Look choises of parameter's Bit1 DS mask [553] (page 38)		

7.6.3 PROCESS CONTROLLER

Group of parameters number [385]

General process controller is intended for additional control of the selected quantity. Controlled quantity is selected using the signal specified by PC feedback source [139] (page 68) and its setpoint by Source of PC setpoint [130] (page 68). Output PC [64] (page 18) is then used as a source of a parameter of output type SIGNAL (e.g. frequency or torque setpoint).

MENU \ SETTINGS \FUNCTIONS \PROCESS CONTROLLER

Name [ID]	Description	Def.
PC Mode [386]	Selection of process controller mode and physical dimension of the output.	Turned off
Turned off	Process controller is turned off.	
Pressure Pa	Controlled quantity is the pressure in Pascal [Pa].	
Pressure inverted	Pa	Controlled quantity is the pressure in Pascal [Pa], error is inverted.
Pressure bar	Controlled quantity is the pressure in bar [bar].	
Pressure \quad bar	Controlled quantity is the pressure in bar [bar], error is inverted.	

UNIFREM VF v.2.41x

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
term P [411]		
$0.00 \div 30.00$		
Integration term I [412]	Time constant of the integration term of the process controller.	10.00 s
$0.01 \mathrm{~s} \div 600.01 \mathrm{~s}$	Integration term is turned off, if the value is set to 0 s .	
Derivation term $D[413]$	Time constant of the derivation term of process controller.	0.00 s
$0.00 \mathrm{~s} \div 1.00 \mathrm{~s}$		
D term filter [17]	Filter time constant of the derivation term of the process controller.	0.0 ms
$\begin{aligned} & 0.0 \mathrm{~ms} \div 1000.0 \\ & \mathrm{~ms} \end{aligned}$	Filter is bypassed, when the value is set to 0 s .	
Parking [414]	Parking is a function, which automatically deactivates the START, if the parking conditions Depark. hyst. [416] (page 69) and Parking time [415] (page 69) are met. If the PC operates at its low limit for the time Parking time [415] (page 69), converter blocks the START. This can occur if the controlled quantity exceeds the setpoint value and the PC output is at minimum. If the regulation error changes so it exceeds the value Depark. hyst. [416] (page 69), the START block will be undone and PC starts to regulate. This function is used to prevent unnecessary operation of the device and saving the energy when the regulation has no major impact on the controlled quantity.	Turned off
Turned off	Parking is turned off.	
Turned on	Parking is turned on.	
$\begin{array}{\|ll\|} \hline \text { Depark. } \\ \text { [416] } \end{array}$	The value the regulation error, when parking of the converter is canceled (parking = disabling the Start block).	0.0 \%
$\begin{aligned} & -500.0 \% \div 500.0 \\ & \% \end{aligned}$		
Parking time [415] $0.1 s \div 3200.0 \mathrm{~s}$	Time that has to pass, when the parking conditions are met, to park the PC(parking = blocking the Start).	
$0.1 \mathrm{~s} \div 3200.0 \mathrm{~s}$		

PC Initialization

Group of parameters number [1132]
Setting the initialization (reset) signal of the PC output and the I-term to the defined value.
MENU \SETTINGS \FUNCTIONS \PROCESS CONTROLLER \PC INITIALIZATION

Name [ID]	Description	Def.
PC \quad Reset signal [303]	Process controller reset signal.	
Signal	After activating the process controller reset signal, the integration term and the PC output are set to value given by the parameter PC Reset value [1131] (page 69).	
PC Reset [305]	Conditions for PC reset.	
- - -		
PC Reset ianctive [779]	Deactivation of PC reset: In case of a numeric signal if the signal value is lower than the defined level.	
- - -		
PC Reset value [1131]	Value that is set by the converter to the output and the PC integration term after an active PC reset.	0.0000
$\begin{array}{ll} -1.0000 \\ 1.0000 \end{array} \quad \div$		

SPECIAL SETTING PC

Group of parameters number [196]
Special setting of the process controller signals.

UNIFREM VF v.2.41x
MENU \SETTINGS \FUNCTIONS \PROCESS CONTROLLER \SPECIAL SETTING PC

Name [ID]	Description	Def.
Setpoint signal [419]	Selection of the parameter that represents the setpoint value of the process controller. The value is applied if the parameter Source of PC setpoint [130] (page 68) is set to- "Special".	
Signal	Selected parameter is automatically recalculated to the range of regulation of the process controller.	
Feedback signal [408]	Selection of the parameter that represents the feedback value of the process controller.	-
Signal	Selected parameter is automatically recalculated to the given range.	

7.6.4 OPTIMIZATION

Group of parameters number [65]
Setting the parameters for the optimization block that is used to search for the extremum of any signal using the change of a selected setpoint signal, which are connected to optimization output OPT Output [423] (page 19).
Optimization searches for an output value, at which it reaches the criteria of the selected signal. If the measuring conditions Opt. meas. signal [279] (page 72) and the operation condition Opt. reset signal [263] (page 71) during the optimization are met, new output samples are calculated in defined intervals Optimization step [742] (page 19). The found global extremum is saved to the memory.

START. POINT OPT

Group of parameters number [711]
Defines the initial conditions (starting point) of the optimization, when the scanning is turned off.
MENU \SETTINGS \FUNCTIONS \OPTIMIZATION \START. POINT OPT

Name [ID]	Description	Def.
Start. Point OPT [710]	Defines the starting value of the optimization output, when the scanning is turned off.	0.5000
$\begin{array}{ll} 0.0000 \\ 1.0000 \end{array}$	If the OPTSP source Start. point source [712] (page 70) is not selected, this fixed value will be used.	
Start. poin source [712]	Selection of a signal that can be used as an optimization starting point, when the starting point storing condition is met.	
Signal		
$\begin{aligned} & \text { Start. poin } \\ & \text { condition } \\ & \text { [713] } \\ & \hline \end{aligned}$	Signal that is evaluated, if a starting point from the selected signal should be set or not.	$r \left\lvert\, \begin{array}{ll} {[709]} & O P T \\ \text { State } & \end{array}\right.$
Signal	For example, parameter Status word negated [547] (page 20) is selected and in OPTSP active [714] (page 70) "Run" is selected, the starting value from Start. point source [712] (page 70) will be stored, when the converter is not in START mode. When in START, the last saved starting value is kept.	
OPTSP active [714]	Conditions for activation of starting point of optimization.	Measuring
Look choises of parameter's OPT State [709] (page 19)		
OPTSP inactive [715]	OPTSP inactive: In case of a numeric signal if the signal value is lower than the defined level.	
Look choises of parameter's OPT State [709] (page 19)		
Opt. [80] \quad signal	Selection of a parameter, whose value should be optimized according to the criteria Opt. criteria [208] (page 70).	
Signal	Most often, the optimization signal is selected as Produced or Consumed converter load (MPPT algorithm - maximum power point tracking). Optimized signal can be externally supplied via the analog inputs or derived from any other diagnostic quantity of the frequency converter.	
Opt. criteria [208]	Setting the optimization criteria. For example: on the load that consumes energy the minimum power criteria is selected; on the generators maximum or power factor of the produced power.	Signal min.
Signal min.	Optimization to the minimal value of a selected signal Opt. signal [80] (page 70).	

Name [ID]	Description	Def.
Signal max.	Optimization to the maximum value of a selected signal Opt. signal [80] (page 70).	
$\begin{array}{ll} \hline \text { delta } & \text { signal } \\ {[255]} \end{array}$	Difference between the found global extremum and the optimized quantity, when the optimization is restarted.	
	Global extremum can be overwritten with a new value after the initial scan, if a new value is found that matches the optimization criteria better. If the algorithm moves away from the found global extremum more that it is set in this parameter, an optimization restart will be generated, or eventually a new scan.	
$\begin{array}{\|ll} \hline \text { Opt. } & \text { peric } \\ {[13]} \end{array}$	Minimum time between two optimization steps.	2.0 s
$\begin{array}{\|lr} \hline 0.1 & \mathrm{~s} \\ 3000.0 \mathrm{~s} \\ \hline \end{array}$	Time needed to fulfil the measurement condition is added to this time, the condition can be ramp settling or any other event selected by the parameter Opt. meas. signal [279] (page 72).	
Scanning [420]	Full output range scan mode. After START command or optimization reset, converter scans the full range of output OPT Output [423] (page 19) in the direction set by Start. direction [426] (page 71) in order to find new global extremum. Scanning is needed in systems where there are several local extrems and the highest one has to be found. Scan is a gradual search of the whole output range and finding the area of the global extremum. Scan step is 5% of the output signal.	urned off
Turned off	Scanning is turned off.	
Turned on	Scanning is turned on.	
Step [425]	Setting the mode of optimization step calculation during the fine tuning. After starting the converter and scanning the fine optimization starts, slowly changes the output OPT Output [423] (page 19) by small fluctuations of preset step Optimization step [742] (page 19) to maintain the global extremum. Method of calculating the optimization step during the soft adjustment of the extremum.	
Fixed	Search with a constant output signal step, which is set by the parameter Min. step [427] (page 71).	
Variable	Search with a variable output signal step that is increased proportionally to the derivation of the optimized signal from the value Min. step [427] (page 71) to 5% of the output range and proportionally to the gain Adapt. step gain [743] (page 71).	
$\begin{array}{\|l\|} \hline \text { Adapt. } \\ \hline \text { step } \\ \text { gain [743] } \\ \hline \end{array}$	Gain of the optimization adaptivity step algorithm from the optimized signal derivative value.	. 800
$\begin{aligned} & 0.001 \\ & 100.000 \end{aligned}$	Only applies to the variable optimization step in Step mode [425] (page 71).	
$\begin{array}{\|cc\|} \hline \mathrm{Min}^{2} & \text { step } \\ \hline 427] \end{array}$	Minimal optimization step.	0.001
$0.001 \div 0.050$	Optimization step is the difference between two consecutive optimization output samples.	
Start. direction [426]	Direction of the first search. Depending on the technology and specific deployment, is is suitable to search from up to bottom or vice versa. Initial direction is also applied during the Scan process, if turned on.	From minimum
From minimum	Optimization begins from the minimal output value.	
From maximum	Optimization begins from the maximal output value.	
$\begin{array}{\|cc\|} \hline \begin{array}{\|cc} \text { Opt. } & \text { reset } \\ \text { signal } & {[263]} \end{array} \\ \hline \end{array}$	Signal defining the condition of optimization reset.	
Signal	This signal is used as an optimization operation condition. Is usually set as a specia combination of bits (flags) of the status or control word.	
$\begin{aligned} & \text { Opt. } \\ & {[273]} \end{aligned}$	Conditions for optimization Rese	
\div		
Opt._reset inactive [530]	Optimization reset deactivation: In case of a numeric signal if the signal value is lower than the defined level.	

Name [ID]	Description	Def.
Opt. meas. signal [279]	Selection of a signal that is used to allow the measurement and the next optimization step.	
Signal	Allows to set the conditions, under which the Optimization signal (Opt. signal [80] is stable and not burdened with different errors.	(page 70))
$\begin{array}{ll} \hline \text { Opt. meas. } \\ \text { active [160] } \end{array}$	Measurement of the next optimization step occurs after satisfying the selected condition.	

Opt. meas. inactive [531]	Optimization measurement deactivation: In case of a numeric signal if the signal value is lower than the defined level.	

7.6.5 MECHANICAL BRAKE

Group of parameters number [517]
Parameters for activation and operation conditions of motor mechanical brake.
MENU \SETTINGS \FUNCTIONS \MECHANICAL BRAKE

Name [ID]	Description	Def.
Mechanical brake [518]	Turning on the control of the motor mechanical brake. It may have an influence on the frequency setpoint value and on command generation for the brake control Converter state [76] (page 20), bit "Mech. brake". For correct operation of the mechanical brake, it is necessary to choose the "Brake" in relay settings.	Turned ff
Turned off	Mechanical brake control is turned off.	
Standard	Mechanical brake control is turned on.	
Lift	Control of the mechanical brake for lift drives is turned on.	
Brake delay [519]	Delay for the RELAY Brake switch command after the START command.	0.01 s
$\begin{aligned} & 0.00 \mathrm{~s} \\ & 100.00 \mathrm{~s} \end{aligned}$	From experience, it is set to 0s, because the brake itself and its contactor have their delays.	
Brake reaction [520]	Brake reaction time after the RELAY switch.	0.20 s
$\left\lvert\, \begin{aligned} & 0.00 \mathrm{~s} \\ & 100.00 \mathrm{~s} \end{aligned}\right.$	Equals the brake reaction time from the control relay switch to the actual mechanical release. If this time is set to a shorter than the real time, torque current saturation can occur during the start and after the brake release, recoils and mechanical bumps to the system can occur.	
Brake advance [521] 0.00	Advance time of the RELAY brake switch-off after reaching the frequency Brake frequency [522] (page 72) in STOP before turning the motor off.	$0.20 \mathrm{~s}$
$\begin{aligned} & \hline 0.00 \mathrm{~s} \\ & 100.00 \mathrm{~s} \\ & \hline \end{aligned}$	By setting this parameter, it is possible to eliminate the time until the mechanical brake safely stops the drive to prevent unwanted rotation of the shaft during the drive stop.	
$\begin{aligned} & \hline \text { Brake } \\ & \text { frequency } \\ & \text { [522] } \\ & \hline \end{aligned}$	Frequency, below which the brake is active.	2.0 Hz
$0.0 \div$ Nom. frequency [4]	Helps to achieve enough starting torque during the brake release, mainly in the V/f control. In a closed operation mode and a vector operating mode, it is recommended to set it to 0.0 Hz .	

7.6.6 EXTERNAL THERMAL PROTECTION (ETP)

Group of parameters number [860]
Setting the external thermal protection (ETP) evaluation block. Sensor type selection (PT100, PTC, Custom). External temperature faults and warnings configuration. For proper operation of ETP, it is necessary to properly configure the corresponding AOUTx and AINx in the [216] (page 47) group.
$M E N U \backslash S E T T I N G S ~ \ F U N C T I O N S ~ \ E X T E R N A L ~ T H E R M A L ~ P R O T E C T I O N ~(E T P) ~$

Name [ID]	Description	Def.				
ETP Type [861]	Turning on / off the external thermal protection (ETP) function and selecting the connected temperature sensor type. Number of sensors connected in series is set turned by the parameter Sensor count [862] (page 73).					
off			$	$	ETP turned off	Converter does not evaluate external temperature.
:---	:---					
PT100	External temperature sensor is one or more PT100 sensors.					

Name [ID]	Description	Def
KTY83/85	External temperature sensor is one or more KTY83/85 sensors.	
KTY81/82/84	External temperature sensor is one or more KTY81/82/84 sensors.	
Custom sens	External temperature sensor is one or more user defined temperature sensors, which transmission characteristics is defined by the Resistance by $20^{\circ} \mathrm{C}$ [863] (page 73) and Resistance in $100^{\circ} \mathrm{C}$ [864] (page 73) parameters/	
PTC thermistor	External temperature sensor is one or more PTC thermistors, which threshold temperature is defined in the ETP Fault [866] (page 73) parameter. ETP warning occurs after exceeding the sensor resistance beyond 300 ohm and an ETP fault occurs after exceeding the sensor resistance beyond 1000 ohm. Drop under 550 ohm causes the fault to disappear.	
Voltage source ETP [906]	ETP sensor voltage measurement source signal settings. It is also necessary to feed the sensor from an analog output, whose function is selected as "ETP AIN1 Current".	
AIN1	Voltage on the thermal sensor is connected to AIN1 (0-10V).	
AIN2	Voltage on the thermal sensor is connected to AIN2 (0-10V).	
AIN3	Voltage on the thermal sensor is connected to AIN3 ($0-10 \mathrm{~V}$) .	
AIN4	Voltage on the thermal sensor is connected to AIN4 (0-10V)	
Special	The source of the measurement is the special signal U ETP Signal [857] (page 74).	
Sensor [862]	Serially connected external temperature sensors count.	
$1 \div 10$	In case the motor or other device is equipped with multiple identical temperature sensors (coils, bearings), it is possible to connect them serially, and the count will be defined in this parameter. Any combination of thermal sensors in the windings and bearings is not allowed	
ETP Warning [865]	Temperature in the external sensor temperature scanning point, in which the ${ }_{90.0^{\circ} \mathrm{C}}$ converter generates warning " W13-External temperature (page 24)".	
$\begin{aligned} & -500.0{ }^{\circ}{ }^{\circ} \mathrm{C} \\ & 500.0^{\circ} \mathrm{C} \end{aligned}$	\rightarrow In case that there are multiple serially connected sensors of an identical type, it is the average temperature from the multiple measuring points.	
ETP Fault [866]	Temperature, in which the converter generates increased temperature faults in the external sensor temperature scanning point. Represents the threshold sensor temperature by 1000 ohm when using the ETP=PTC thermistor type. Fault occurs ${ }^{\circ} \mathrm{C}$ after exceeding this temperature.\qquad	
$\begin{aligned} & -500.0{ }^{\circ}{ }^{\circ} \mathrm{C} \\ & 500.0^{\circ} \mathrm{C} \\ & \hline \end{aligned}$	In case that there are multiple serially connected sensors of an identical type, it is the average temperature from the multiple measuring points.	
Low ETP temperature $[1283]$	When ETP temperature drops below this value, converter generates a fault E38ETP temperature (page 28) because of the extremely low temperatures, which-100.0 can be caused by incorrect wiring or damage of ETP sensor. When ETP Type set ${ }^{\circ} \mathrm{C}$ to "PTC thermistor", this parameter has no meaning.	
$\begin{aligned} & -500.0 \\ & 500.0^{\circ} \mathrm{C} \end{aligned}$		
ETP \quad maxima current [1087]		
	Restricts the current to the EHP sensors to prevent undesired overheating of the sensor. If a special sensor is used, it is necessary to set the maximal current according to its specification. In the EHP = PTC type, the measuring current is limited to the 1 mA value and in the PT100 type to 3 mA and then this parameter is inactive.	

CUSTOM SENSOR

Group of parameters number [810]
Setting the characteristic of the custom ETP sensor (if "Custom sensor" is selected in ETP Type [861] (page 72)).

MENU \SETTINGS \FUNCTIONS \EXTERNAL THERMAL PROTECTION (ETP) \CUSTOM SENSOR

Name [ID]	Description	Def.
$\begin{aligned} & \begin{array}{l} \text { Resistance by } 20^{\circ} \mathrm{C} \\ \text { [863] } \end{array} \\ & \hline \end{aligned}$	Resistance value of an external temperature sensor in $20^{\circ} \mathrm{C}$, in case that the sensor characteristics is user-defined.	$\begin{aligned} & 1200.0 \\ & \Omega \\ & \hline \end{aligned}$
$0.1 \Omega \div 99000.0 \Omega$		
$\begin{aligned} & \text { Resistance in } 100^{\circ} \mathrm{C} \\ & {[864]} \end{aligned}$	Resistance value of an external temperature sensor in $100^{\circ} \mathrm{C}$, in case that the sensor characteristics is user-defined.	4600.0

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
$0.1 \Omega \div 99000.0 \Omega$		

SPECIAL SETTING ETP

Group of parameters number [569]
Special source setting for the ETP voltage drop measurement.

MENU \SETTINGS \FUNCTIONS \EXTERNAL THERMAL PROTECTION (ETP) \ SPECIAL SETTING ETP

Name [ID]	Description	Def.
U ETP Signal [857]	Selecting the signal, which should be evaluated as voltage on the ETP sensor.	-
Signal	Usually an analog input in the 0 to 10 V mode is used.	

7.7 FAULTS AND WARNINGS

Group of parameters number [136]
Setting the parameters affecting the conditions of generation and termination of converter fault states.
MENU \SETTINGS \FAULTS AND WARNINGS

Name [ID]	Description	Def.
Clear [500]	This command clears the converter fault history. There will be no record in the history.	

7.7.1 OPTIONAL FAULTS

Group of parameters number [190]
Turning on / off the evaluation of some fault states.
MENU \SETTINGS \FAULTS AND WARNINGS \OPTIONAL FAULTS

Name [ID]	Description	Def.
$\begin{aligned} & \operatorname{lnpu} \\ & {[337} \end{aligned}$	Turning on the converter input phase loss evaluation. It is recommended to leave the input phase loss evaluation turned on, because in the converter continuous two-phase operation there is a risk of damage to the power capacitors. It is turned off in special cases only, when the supply grid is of poor quality or when the fault " E13-Input phase loss (page 27)" interrupts the operation unnecessary often.	valuat
Is not evaluated	Fault " E13-Input phase loss (page 27)" is not evaluated.	
Is evaluated	Fault " E13-Input phase loss (page 27)" is evaluated.	
$\begin{aligned} & \text { Output phase } \\ & \text { loss [338] } \end{aligned}$	Turning on the converter output phases loss evaluation. The criteria for evaluation of this fault is current phase asymmetry of 30% calculated from the nominal current of the converter.	
Is not evaluated	Fault " E2-Output phase outage (page 27)" is not evaluated.	
Is evaluated	Fault " E2-Output phase outage (page 27)" is evaluated.	
Motor overloading [27]	Setting the method of evaluating the motor (load) thermal overloadin	Selfcooling
Not evaluated	Converter does not evaluate the thermal overload of the connected device.	
Self-cooling	Fault " E29-Motor overload (page 28)" is evaluated according to the motor temperature model considering the motor rotation speed. In this mode, the generation of warning " W17-MT Overload (page 25)" or fault " E29-Motor overload (page 28)" at low motor speed may occur even for current lower than Nom. current [151] (page 30).	
Force	Fault " E29-Motor overload (page 28)" is evaluated according to the motor temperature model without considering the motor rotation speed.	
AIN Fault [837]	This parameter turns on / off the evaluation of analog input faults. The fault is evaluated only if the input is set to $4-20 \mathrm{~mA}$ or $2-10 \mathrm{~V}$, output value is under the minimal value and the fault evaluation is turned on.	
Is evaluated	If the analog input is for a long time under the minimal value, the converter generates the fault.	
Is not evaluated	Converter accepts any analog input value.	
Overfrequency	Turning on the fault evaluation for exceeding the stator limit frequency. Fault "\|Is	

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
[85]	E10-Overfrequency (page 27)" can indicate controller loop faults or incorrecte parameters settings. This fault protects the mechanical components of the device when the converter and technological device positions increase the converter output frequency beyond control. Fault occurs, if the output frequency exceeds the value Overfrequency limit [97] (page 75). Origin of this fault may indicate incorrect configuration of the control algorithms.	valuat
Is not evaluated	Fault " E10-Overfrequency (page 27)" is not evaluated.	
Is evaluated	Fault " E10-Overfrequency (page 27)" is evaluated.	
Overfrequency limit [97]	$\begin{array}{l}\text { Defines the stator frequency limit for evaluation of the fault " } \\ \text { Overfrequency (page 27)". }\end{array} \begin{array}{c}\mathrm{E} 0-3050.00 \\ \mathrm{~Hz}\end{array}$	
$\begin{array}{\|cc} 0.00 & \mathrm{~Hz} \\ 3050.00 & \mathrm{~Hz} \\ \hline \end{array}$	Fault occurs if the fault evaluation is turned on in Overfrequency [85] (page 74) and the converter output frequency exceeds this limit for a time longer than 1 second.	
External faul source [225]	Setting the source of the external fault. If the source is active, the fault " E7External fault (page 27)" is generated. Is used as an emergency stop. Fault None blocks the converter operation.	
Look choises of parameter's Quick stop source. [986] (page 33)		

SPECIAL SETTING

Group of parameters number [554]
Setting the special source of the external fault.
MENU \SETTINGS \FAULTS AND WARNINGS \OPTIONAL FAULTS \SPECIAL SETTING

Name [ID]	Description	Def.
Ext. fault signal [527]	Signal that is evaluated if the fault " E7-External fault (page 27)" occurs or not. Either numeric or discrete signal can be chosen.	[184] Binary inputs
Signal		
External [528] fault	Conditions for external fault.	
Look choises of parameter's Binary inputs [184] (page 16)		
External fault inactive [529] lexternal fault deactivation: In case of a numeric signal if the signal value is		
Look choises of parameter's Binary inputs [184] (page 16)		

7.7.2 FAULT ACKNOWLEDGEMENT

Group of parameters number [164]
Mode of operation after the fault and conditions settings for the converter block after a high number of faults.
MENU \SETTINGS \FAULTS AND WARNINGS \FAULT ACKNOWLEDGEMENT

Name [ID]	Description	Def.	
Fault acknowledgement source [165]	Setting the method of acknowledgement the fault state. If the cause no longer exists (high current, low voltage), the fault state ends - will be confirmed by the configured fault confirmation method.	Control panel Automatically \| BIN MODBUS	PROFIBUS Special
- Control panel	Fault will be acknowledged by the control panel.		
\square Automatically	Fault will be acknowledged automatically.		
$\square \mathrm{BIN}$	Fault is acknowledged by activating the selected binary in	input.	
- MODBUS	Fault is acknowledged over the MODBUS communication	n interface.	
- PROFIBUS	Fault is acknowledged over the PROFIBUS communication	tion interface.	
\square Special	Fault is acknowledged over the special settings [566] (pa	(page 76).	
Acknowl. BIN [1588]	Conditions for fault acknowledgement from binary inputs.		
Look choises of parameter's Bit1 DS mask [553] (page 38)			
Time after fault [428]	When the cause of the fault no longer exists (for example overcurrent), the fault duration time will be prolonged by the defined time.	$5.0 \mathrm{~s}$	

UNIFREM VF v.2.41x

Name [ID]	Description	Def.		
$0.0 \mathrm{~s} \div 3600.0 \mathrm{~s}$	E.g. 5 s means that every fault will last for at least 5 seconds.			
Max. fault count [431]	Maximal fault count that can occur in the time defined by Min. fault period [432] (page 76).			
$5 \div 20$	Protects the converter or device against frequent faults, which could cause permanent damage to the converter or connected device. If a certain frequency of fault occurence is exceeded, the converter generates the fault " E31-Too many faults (page 28)".			
Min. fault period [432]	Time, in which the maximal fault count can occur Max. fault count [431] (page 76). If there are more faults, the fault " E31-Too many faults (page 28)" is generated.			
$5.0 \mathrm{~h} \div 72.0 \mathrm{~h}$				

SPECIAL SETTING

Group of parameters number [566]
Setting the special source of fault confirmation, e.g. in the chosen time of day or over the analog input.
MENU \SETTINGS \FAULTS AND WARNINGS \FAULT ACKNOWLEDGEMENT \SPECIAL SETTING

Name [ID]	Description	Def.
Acknowledgement signal [509]	Signal for fault acknowledgement.	$\begin{array}{\|l\|} \hline[184] \\ \text { inputs } \end{array}$
Signal		
Acknowledgement [510]	Condition of fault acknowledgement.	
Look choises of parameter's Binary inputs [184] (page 16)		
Confirmation inactive [511]	Confirmation inactive: In case of a numeric signal if the signal value is lower than the defined level.	
Look choises of parameter's Binary inputs [184] (page 16)		

7.7.3 QUANTITIES TO LOG

Group of parameters number [246]
Selection of quantities, which should be logged to history when an event occurs (faults, warnings...).
MENU \SETTINGS \FAULTS AND WARNINGS \QUANTITIES TO LOG

Name [ID]	Description	Def.
Value 1 [247]	Selection of the first optional quantity which will be logged to the history. When an event occurs (fault), its actual value will be stored.	 $[75]$ $C B$ temperature
Signal		
Value 2 [248]	Selection of the second optional quantity which will be logged to the history. When an event occurs (fault), its actual value will be stored.	$[74] \quad$ Cooler temperature
Signal		
Value 3 [249]	Selection of the third optional quantity which will be logged to the history. When an event occurs (fault), its actual value will be stored.	$[76]$ Converter state
Signal		
Do not log [746]	Determines if some faults will not be logged to the fault history. This parameter does not influence the fault evaluation itself.	Undervoltage
\square Undervoltage	Fault " E5-Undervoltage (page 27)" will not be logged to the fault history.	
\square Supply	Fault " E16-Supply overload (page 27)" will not be logged to the fault history.	
\square Safety input	Fault " E14-Safety input (page 27)" will not be logged to the fault history.	
Par. changed $[1175]$	Allows creating the parameter changes history.	Control panel
\square Control panel	All parameter changes by control panel are recorded.	
\square MODBUS	All parameter changes over MODBUS are recorded.	
\square PROFIBUS	All parameter changes over PROFIBUS are recorded.	

7.7.4 WARNINGS

Group of parameters number [964]

Setting the conditions of generating the individual warnings and their storing to the fault history.
MENU \SETTINGS \FAULTS AND WARNINGS \WARNINGS

Name [ID]	Description	Def.
Warnings [705]	Restricts the displayed warnings to the list of more important warnings.	Basic
Basic	Some warnings, which are not neccesary for basic users, will be suppressed.	
Expert	All available warnings and function messages will be displayed.	
Cooler temperature warning [767]	Temperature, at which the cooler displays a warning " W6-Cooler temperatu (page 24)".	C
$40.0{ }^{\circ} \mathrm{C} \div 120.0{ }^{\circ} \mathrm{C}$		
CB temperature warning [204]	Temperature, at which the converter displays a Control board (CB) overheat 55.0 warning " W7-CB temperature (page 24)".	
$20.0 \div$ Fault 3	${ }^{3}$ Refer to chapter 3.2 Temperatures (str. 13) by product type.	
External warning source [560]	External warning source settings. If the source is active, the warning " W49External warning (page 26)" becomes active. It is used as signalization of any desired event. It does not influence the converter operation.	None
Look choises of parameter's Quick stop source. [986] (page 33)		
Warning log [968]	Selection from warnings 1-32, which will be logged to the fault history at the time they occur.	
Look choises of parameter's Warning [250] (page 20)		
Warning [969]	2 Selection from warnings 33-64, which will be logged to the fault history at the time they occur.	
Look choises of parameter's Warning2 [424] (page 20)		

SPECIAL SETTING

Group of parameters number [563]
Setting the special source of external warning
MENU \SETTINGS \FAULTS AND WARNINGS \WARNINGS \SPECIAL SETTING

Name [ID]	Description	Def.
Ext. warning signal [965]	Signal that is evaluated if the warning " W49-External warning (page 26)" occurs or not. It is used as an external event warning. Warning does not block the converter operation. Either numeric or discrete signal can be chosen.	[184] Binary inputs
Signal		
Ext. warning [966]	Conditions for external warning.	
Look choises of parameter's Binary inputs [184] (page 16)		
Ext. warning inactive [967]	External warning is deactivated: In case of a numeric signal if the signal value is lower than the defined level.	
Look choises of parameter's Binary inputs [184] (page 16)		

7.8 DISPLAY

Group of parameters number [48]
Selecting the parameters displayed on the control panel.

7.8.1 DISP. QUANT. SETTINGS

Group of parameters number [88]
Displayed quantities settings. Quantities that are displayed in the upper part of the display in the MONITOR, SETTINGS and DIAGNOSTICS window.

MENU \SETTINGS \ DISPLAY \DISP. QUANT. SETTINGS

Name [ID]	Description	Def.
DV 1 [51]	Selecting the first displayed quantity.	[210] Date
Signal		
DV 2 [52]	Selecting the second displayed quantity.	[209] Time

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
Signal		

7.8.2 MONITOR SETTING

Group of parameters number [1214]
Displayed quantities settings. Quantities that are displayed in the upper part of the display in the MONITOR, SETTINGS and DIAGNOSTICS window.

MENU \SETTINGS \DISPLAY \MONITOR SETTING

Name [ID]	Description	Def.
Monitor 1 [53]	Selecting the quantity that will be displayed in the monitor window in the first row.	7] Freq. INV
Signal		
Monitor 2 [54]	Selecting the quantity that will be displayed in the monitor window in the second row.	[46] Voltage DC
Signal		
Monitor 3 [55]	Selecting the quantity that will be displayed in the monitor window in the third row.	[42] Current
Signal		
Monitor 4 [56]	Selecting the quantity that will be displayed in the monitor window in the fourth row.	[184] Binary inputs
Signal	Selecting the quantity that will be displayed in the monitor window in the fifth row.	
Monitor 5 [57]		$[74]$ Cooler temperature
Signal		
Timeout [198]\quad panel	Setting the communication timeout for the control panel.	100 ms
$15 \mathrm{~ms} \div 200 \mathrm{~ms}$		
LANGUAGE [231] La	Language change.	Slovensky
Slovensky \| English		

7.9 COMMUNICATION

Group of parameters number [213]
Setting the serial communication of the converter.
MENU \ SETTINGS \COMMUNICATION

Name [ID]	Description	D
Converter address [234]	Address is used for identification of the device. It is the sum of preset address and Address shift [1155] (page 78). It is also used for the communication with the contro panel. In case that more converters are connected, every converter has to have unique address.	d
1 $\div 99$		
Address shift [1155]	Selection of bits, which create the external address. The weight of the bits is applied by the order of the selections. Communication address is then calculated as a sum of the external address and the parameter Converter address [234] (page 78).	
Look choises of parameter's Bit1 DS mask [553] (page 38)		
Statistics reset [238]	Statistics reset in the serial communication diagnostics. (number of messages, number of fault messages,...)	

7.9.1 MODBUS

Group of parameters number [658]
Setting the MODBUS communication protocol. VONSCH implementation of MODBUS protocol is MODBUS RTU specification compliant.
Detailed description of MODBUS communication protocol can be found on www.vonsch.sk, in the section Support.

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
Baud RS485 $[218]$	RS 485 serial port communication baud rate setting.	$\begin{array}{\|l\|l\|} \hline 115,200 \\ \mathrm{Bps} \end{array}$
9600 Bps		
19,200 Bps		
38,400 Bps		
57,600 Bps		
115,200 Bps		
$128,000 \mathrm{Bps}$		
115,200s Bps	Baud rate with corrected timing between frames, suitable for SIMATIC S7-1200.	
Baud ext. module [230]	Extension module serial port communication speed. Extension module is optional.	$\begin{aligned} & 115,200 \\ & \mathrm{Bps} \\ & \hline \end{aligned}$
Look choises of	parameter's Baud RS485 [218] (page 79)	
MB Idle [961]	Selecting how the converter should react when it is not communicating with the Modbus master. After the defined idle time the warning occurs, or the fault. Or first the warning and then the fault.	
\square Fault	The converter generates the fault " E42-Modbus Timeout (page 28)", when no valid request or broadcast (if allowed) is received from the Modbus master within the preset time.	
\square Warning	The converter generates the warning " W42-Modbus Timeout (page 26)", when no valid request or broadcast (if allowed) is received from the Modbus master within the preset time.	
\square Fault CW	The converter generates the fault " E42-Modbus Timeout (page 28)", when no control word or setpoint is received in valid request or broadcast(if allowed) from the Modbus master within the preset time.	
\square Warning CW	The converter generates the warning " W42-Modbus Timeout (page 26)", when no control word or setpoint is received in valid request or broadcast(if allowed) from the Modbus master within the preset time.	
$\left\lvert\, \begin{array}{cc} \hline \text { MB } & \text { Fault } \\ \text { timeout } \\ {[659]} \end{array}\right.$	Timeout of communication interruption with Master. After this time, fault E42-1 5.00 sModbus Timeout (page 28) is generated.	
$\begin{array}{\|l\|l\|} \hline 0.10 \mathrm{~s} \\ 3600.00 \mathrm{~s} \end{array}$		
MB Warning timeout [962]	Timeout of communication interruption with Master. After this time, warning " W42-Modbus Timeout (page 26)" is generated. If a Modbus protocol fault and warning are evaluated th the same time, see MB Idle [961] (page 79), then this 2.00 s parameter must be lower than the parameter MB Fault timeout [659] (page 79), otherwise the warning will not be generated.	
$\begin{array}{\|ll\|} \hline 0.10 \mathrm{~s} \\ 3600.00 \mathrm{~s} & \div \\ \hline \end{array}$		
$\begin{array}{\|l\|} \hline \text { MB Warning } \\ \text { mode [963] } \end{array}$	Defines what action should the converter take after Modbus warning occurs.	Reset
Look choises of	parameter's PB Warning mode [816] (page 81)	
$\begin{aligned} & \hline \begin{array}{l} \text { Broadcast } \\ \text { [1156] } \end{array} \\ & \hline \end{aligned}$	Turning on / off the broadcasts. Broadcast is a message which is sent to all recipients simultaneously.	
Yes	Broadcasts are turned on and the converter is processing them.	
No	Broadcasts are turned off and the converter is ignoring them.	
DataFormat [660]	This parameter defines the order of transferring single bytes. This change of format is only applied for the 485 line. This is the parameter data, SW, CW, and accelerated block transfer. By default, 32-bit data 0xHhHILhLI is transmitted in the order $0 x H h, 0 x H I, 0 x L h, 0 x L I$.	
No swap	32 bit data are transfered in the byte order: $0 \times \mathrm{Hh}, 0 \times \mathrm{HI}, 0 \times \mathrm{Lh}, 0 \times \mathrm{LI}$.	
Byte swap	32 bit data are transfered in the byte order: $0 \times \mathrm{HH}, 0 \times \mathrm{Hh}, 0 \times \mathrm{LI}, 0 \times \mathrm{Lh}$.	
Word swap	32 bit data are transfered in the byte order: $0 \times \mathrm{Lh}, 0 \times \mathrm{LI}, 0 \times \mathrm{Hh}, 0 \times \mathrm{HI}$.	
Byte \& word swap	32 bit data are transfered in the byte order: $0 \times \mathrm{LI}, 0 \times \mathrm{Lh}, 0 \times \mathrm{HH}, 0 \times \mathrm{Hh}$.	
MB counters [1556]	Selection of physical lines to check for being idle and increment communication counters.	$\begin{aligned} & \text { RS485 } \\ & \text { Ext. } \\ & \text { module } \end{aligned}$
\square USB \| - RS48	\| - Ext. module	

Parameters MODBUS

Group of parameters number [573]
Parameter selection (mapping) for the Modbus communication fast block transfer.

Name [ID]	Description	Def.
ID 0 [1094]		-
Signal		
ID 1 [1095]		-
Signal		
ID 2 [1096]		-
Signal		
ID 3 [1097]		-
Signal		
ID 4 [1098]		-
Signal		
ID 5 [1099]		-
Signal		
ID 6 [1100]		-
Signal		
ID 7 [1101]		-
Signal		
ID 8 [1102]		-
Signal		
ID 9 [1103]		-
Signal		
ID 10 [1104]		-
Signal		
ID 11 [1105]		-
Signal		
ID 12 [1106]		-
Signal		
ID 13 [1107]		-
Signal		
ID 14 [1108]		-
Signal		
ID 15 [1109]		-
Signal		
ID 16 [1110]		-
Signal		
ID 17 [1111]		-
Signal		
ID 18 [1112]		-
Signal		
ID 19 [1113]		-
Signal		
ID 20 [1114]		-
Signal		
ID 21 [1115]		-
Signal		
ID 22 [1116]		-
Signal		
ID 23 [1117]		

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
Signal		
ID 24 [1118]		-
Signal		
ID 25 [1119]		-
Signal		
ID 26 [1120]		-
Signal		
ID 27 [1121]		-
Signal		
ID 28 [1122]		-
Signal		
ID 29 [1123]		-
Signal		
ID 30 [1124]		-
Signal		
ID 31 [1125]		-
Signal		
ID 32 [1126]		-
Signal		
$\begin{array}{\|ll\|} \hline \begin{array}{ll} \text { Shift } & \text { value } \\ {[1512]} \end{array} & \\ \hline \end{array}$	It is used for special holding registers over broadcast.	1
-99 $\div 99$		
$\begin{array}{\|lr\|} \hline \text { Shift } & \text { mask } \\ {[1513]} \end{array}$	It is used for special holding registers over broadcast.	
Look choises of	of parameter's Bit1 DS mask [553] (page 38)	
Step 0 [1514]	Setting of the step. It serves to determine how to recalculate 16-bit special holding register to the selected variable set by ID 0.	90
-8 $\div 8$	For selected value 0, 16bit number 123 is recalculated to 32bit number as 123 . For value 123 is recalculated as 12.3.	$\text { ue } 1,$

7.9.2 PROFIBUS

Group of parameters number [812]
Profibus is an open serial communication standard. Extension module Vonsch Profibus_UNI fully supports the Profibus DP standard.
Detailed description of PROFIBUS communication protocol can be found on www.vonsch.sk, in the section Support.

MENU \SETTINGS \COMMUNICATION \PROFIBUS

Name [ID]	Description	Def.
PB Idle [813]	Selecting the way of reaction of the converter to communication error, when either converter or master do not communicate with the Profibus module. After the defined idle time, warning " W41-Profibus Timeout (page 25)" or fault " E37Profibus Timeout (page 28)" is generated.	
\square Fault \| \square Warning		
PB Fault timeout [814]	Timeout of communication interruption with Master. After this time, fault E37-Profibus Timeout (page 28) is generated.	5.00 s
$\begin{array}{\|lc\|} \hline 0.10 \mathrm{~s} \\ 3600.00 \mathrm{~s} & \div \\ \hline \end{array}$		
PB Warning timeout [815]	MODBUS communication timeout, After communication error longer than this time, warning " W41-Profibus Timeout (page 25)" is generated. If a Modbus protocol fault and warning are evaluated at the same time, see PB Idle [813] (page 81), then this parameter must be lower than the parameter PB Fault timeout [814] (page 81), otherwise the warning is not generated.	$2.00 \mathrm{~s}$
$\begin{array}{\|lr} 0.10 \mathrm{~s} \\ 3600.00 \mathrm{~s} \end{array}$		
PB Warning	Defines what action should the converter take after warning " W41-Profibus Timeout\|Ren	Reset

Name [ID]	Description	Def.
mode [816]	(page 25)" occurs.	
Reset	Converter goes to reset.	
Stop	Converter stops.	
Quick stop	Converter stops (Quick stop).	
No action	Converter will not respond to warnings.	PD values
PB \quad Type $[1486] ~$	Specifies the format of transmission of operational variables.	
2 PD values	It is possible to simultaneously transmit two variables only in the format described by the documentation.	
4 PD values	It is possible to transmit 4 values as 16-bit numbers.	
VQFREM	It is possible to transmit 4 values as 16-bit numbers, by addresses VQFREM.	
PB Options $[1587]$		(page 82), not by the
\square Normalized	REF and ACT variables will be normalized to 4000h.	
\square Fixed APD	Selection of PD variables, it is set by parameters [1586] communication.	

Parameters PROFIBUS

Group of parameters number [1586]
MENU \SETTINGS \COMMUNICATION \PROFIBUS \PARAMETERS PROFIBUS

7.10 PAR. SETS

Group of parameters number [206]
Selecting a set of parameters for the converter operation.
MENU \SETTINGS \PAR. SETS

Name [ID]	Description	Def.
Set switching	Setting the way of switching between the sets.	Combined

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
[657]		
Combined	Only the first 2 bits of the binary switch are used. Output set corresponds to the binary combination of these bits. If no bits are active, the 1st set is active. If only 1 bit is active, the 2nd set is active. and so on.	
Single	Every single bit of the binary switch represents one set (bit 1 represents set 2). If more switches are active, the set with the higher sequence number is active. If no binary switch is active, the 1st set is active.	
Parameter	It is possible to set the active set using the Active set [205] (page 83) parameter.	
Active set	Switches the active set of parameters, from which the converter will take its configuration.	Set 1
[205]	Converter will take its configuration from 1st set of parameters.	
Set 1	Converter will take its configuration from 2nd set of parameters.	
Set 2	Converter will take its configuration from 3rd set of parameters.	Enabled
Set 3	Converter will take its configuration from 4th set of parameters.	
Set 4	Switch while run [1490]	Enabling or disabling of set switching during motor operation.
Disabled	Sets can be switched only when motor is not running.	
Enabled	Sets can be switched even when motor is running.	

7.10.1 SET SWITCH

Group of parameters number [222]
Binary set switch setting.
MENU \SETTINGS \PAR. SETS \SET SWITCH

Name [ID]	Description	Def.
Bit1 set source [641]	Setting the 1st bit of the set switch. Its function depends on the Set switching [657] (page 82) parameter setting.	None
Look choises of parameter's Quick stop source. [986] (page 33)		
Bit2 set source [642]	Setting the 2nd bit of the set switch. Its function depends on the Set switching [657 (page 82) parameter setting.	None
Look choises of parameter's Quick stop source. [986] (page 33)		
Bit3 set source [643]	Setting the 3rd bit of the set switch. Its function depends on the Set switching [657] (page 82) parameter setting.	None
Look choises of parameter's Quick stop source. [986] (page 33)		

SPECIAL SETTING

Group of parameters number [224]
Special functions setting for the set switches.
MENU \SETTINGS \PAR. SETS \SET SWITCH \SPECIAL SETTING

Name [ID]	Description	Def.
Bit1 set signal $[645]$	Signal that is evaluated if the 1st bit of the binary switch is active. Either numeric or discrete signal can be chosen.	$[184]$ inputs Binary
Signal		
Bit1 set switch- on [646]	Conditions for switching on Bit1.	
Look choises of parameter's Binary inputs [184] (page 16)		
Bit1 set switch- off [647]	Bit1 switch-off: In case of a numeric signal if the signal value is lower than the defined level.	
Look choises of parameter's Binary inputs [184] (page 16)		
$\begin{array}{l}\text { Bit2 } \\ {[648]}\end{array}$ set	Signal that is evaluated if the 2nd bit of the binary switch is active. Either $\left[\begin{array}{ll}{[184]} \\ \text { inputs }\end{array}\right.$numeric or discrete signal can be chosen.	
Signal		
$\begin{aligned} & \text { Bit2 set switch- } \\ & \text { on [649] } \end{aligned}$	Conditions for switching on Bit2.	

7.10.2 USER SETS

Group of parameters number [1290]
Settings of user sets. These sets can store up to 20 selected parameters. There is available up to 32 different values for each selected parameter.

MENU \ SETTINGS \PAR. SETS \USER SETS

Name [ID]	Description	Def.
Switch sets [1480]	Switching of user sets. Selection of binary combination of individual sets. Its value represents the actual foursome of sets. First three selected bits are applied. Switch switches the foursome of sets 1-4, 5-9, ... Selection of a specific set from the selected foursome depends on the switching of normal sets.	
Look choises of parameter's Bit1 DS mask [553] (page 38)		
$\begin{array}{\|ll\|} \hline \begin{array}{ll} \text { Set } & \text { shift } \\ {[1483]} \end{array} \\ \hline \end{array}$	Set shift allows to assign different set as intended to the combination of set switch. The set switch is combined as normal and user set switch.	
-31 $\div 31$	If the shift is 0 , the binary switch 00000 corresponds to set 1,00001 - set 2 , etc. If the shift is 1 , 00000 corresponds to set 2,00001 - set 3, etc ...	
User s [1481]	Number of active user set.	

PARAMS SELECT

Group of parameters number [1291]
Selection of 20 parameters that can store up to 32 different values. After selecting the parameter, its value can not be changed in its original location, but in the user sets for the selected set.

Name [ID]	Description	Def.
Param 1 [1300]		
Signal		
Param 2 [1301]		
Signal		
Param 3 [1302]		
Signal		
Param 4 [1303]		
Signal		
Param 5 [1304]		
Signal		
Param 6 [1305]		
Signal		
Param 7 [1306]		
Signal		
Param 8 [1307]		
Signal		

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
Param 9 [1308]		-
Signal		
Param 10 [1309]		-
Signal		
Param 11 [1310]		-
Signal		
Param 12 [1311]		-
Signal		
Param 13 [1312]		-
Signal		
Param 14 [1313]		-
Signal		
Param 15 [1314]		-
Signal		
Param 16 [1315]		-
Signal		
Param 17 [1316]		-
Signal		
Param 18 [1317]		-
Signal		
Param 19 [1318]		-
Signal		
Param 20 [1319]		-
Signal		

SET 1-4

Group of parameters number [1292]
Settings of selected parameters for sets 1 to 4 . Settings of individual sets can be done by F3 key on the control panel, for a particular parameter.

MENU \SETTINGS \PAR. SETS \ USER SETS \SET 1-4

Name [ID]	Description	Def.
N1_1 [1320]		-
- - -		
N1_2 [1321]		-

N1_3 [1322]		-

N1_4 [1323]		-

N1_5 [1324]		-

N1_6 [1325]		-
- - -		
N1_7 [1326]		-

N1_8 [1327]		-

N1_9 [1328]		

N1_10 [1329]		-

N1_11 [1330]		-

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
- - -		
N1_12 [1331]		-

N1_13 [1332]		-
- - -		
N1_14 [1333]		-

N1_15 [1334]		-
- - -		
N1_16 [1335]		-
- - -		
N1_17 [1336]		-
- - -		
N1_18 [1337]		-
- - -		
N1_19 [1338]		-

N1_20 [1339]		-
- $\div-$		

SET 5-8
Group of parameters number [1293]
Settings of selected parameters for sets 5 to 8 . Settings of individual sets can be done by F3 key on the control panel, for a particular parameter.

MENU \SETTINGS \PAR. SETS \USER SETS \SET 5-8

Name [ID]	Description	Def.
N5_1 [1340]		-

N5_2 [1341]		-
- - -		
N5_3 [1342]		-
- --		
N5_4 [1343]		-
- - -		
N5_5 [1344]		-
- - -		
N5_6 [1345]		-
- - -		
N5_7 [1346]		-

N5_8 [1347]		-

N5_9 [1348]		-
- - -		
N5_10 [1349]		-
- - -		
N5_11 [1350]		-
- - -		
N5_12 [1351]		-
- - -		
N5_13 [1352]		-

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
N5_14 [1353]		-

N5_15 [1354]		-

N5_16 [1355]		-

N5_17 [1356]		-

N5_18 [1357]		-
- - -		
N5_19 [1358]		-
- - -		
N5_20 [1359]		-

SET 9-12

Group of parameters number [1294]
Settings of selected parameters for sets 9 to 12. Settings of individual sets can be done by F3 key on the control panel, for a particular parameter.

Name [ID]	Description	Def.
N9_1 [1360]		-
- - -		
N9_2 [1361]		-

N9_3 [1362]		-
- --		
N9_4 [1363]		-

N9_5 [1364]		-
- $\div-$		
N9_6 [1365]		-
- - -		
N9_7 [1366]		-
- - -		
N9_8 [1367]		-

N9_9 [1368]		-
- - -		
N9_10 [1369]		-
- - -		
N9_11 [1370]		-
- - -		
N9_12 [1371]		-

N9_13 [1372]		-
- - -		
N9_14 [1373]		-
- - -		
N9_15 [1374]		-
- - -		
N9_16 [1375]		-

UNIFREM VF v.2.41x

Name [ID]	Description	Def.
- - -		
N9_17 [1376]		
- - -		
N9_18 [1377]		
- $\div-$		
N9_19 [1378]		
- - -		
N9_20 [1379]		
- - -		

SET 13-16
Group of parameters number [1295]
Settings of selected parameters for sets 13 to 16 . Settings of individual sets can be done by F3 key on the control panel, for a particular parameter.

MENU \ SETTINGS \PAR. SETS \USER SETS \ SET 13-16

Name [ID]	Description	Def.
N13_1 [1380]		-
- - -		
N13_2 [1381]		-
- - -		
N13_3 [1382]		-
- - -		
N13_4 [1383]		-
- - -		
N13_5 [1384]		-
- - -		
N13_6 [1385]		-

N13_7 [1386]		-
- $\div-$		
N13_8 [1387]		-
- - -		
N13_9 [1388]		-

N13_10 [1389]		-
- - -		
N13_11 [1390]		-
- - -		
N13_12 [1391]		-

N13_13 [1392]		-
- - -		
N13_14 [1393]		-

N13_15 [1394]		-
- - -		
N13_16 [1395]		-
- - -		
N13_17 [1396]		-
- - -		
N13_18 [1397]		-
- $\div-$		

UNIFREM VF v.2.41x
VONSCH

Name [ID]	Description	Def.
N13_19 [1398]		-
$-\div-$		
N13_20[1399]		-
$-\div-$		

SET 17-20

Group of parameters number [1296]
Settings of selected parameters for sets 17 to 20 . Settings of individual sets can be done by F3 key on the control panel, for a particular parameter.

Name [ID]	Description	Def.
N17_1 [1400]		-

N17_2 [1401]		-
- - -		
N17_3 [1402]		-
- - -		
N17_4 [1403]		-
- - -		
N17_5 [1404]		-
- - -		
N17_6 [1405]		-
- $\div-$		
N17_7 [1406]		-
- - -		
N17_8 [1407]		-
- - -		
N17_9 [1408]		-
- - -		
N17_10 [1409]		-
- - -		
N17_11 [1410]		-
- $\div-$		
N17_12 [1411]		-
- - -		
N17_13 [1412]		-
- - -		
N17_14 [1413]		-
- - -		
N17_15 [1414]		-
- $\div-$		
N17_16 [1415]		-
- - -		
N17_17 [1416]		-
- - -		
N17_18 [1417]		-
- - -		
N17_19 [1418]		-
- - -		
N17_20 [1419]		-
- - -		

SET 21-24

Group of parameters number [1297]
Settings of selected parameters for sets 21 to 24 . Settings of individual sets can be done by F3 key on the control panel, for a particular parameter.

Name [ID]	Description	Def.
N21_1 [1420]		-

N21_2 [1421]		-

N21_3 [1422]		-

N21_4 [1423]		-

N21_5 [1424]		-

N21_6 [1425]		-

N21_7 [1426]		-
- - -		
N21_8 [1427]		-

N21_9 [1428]		-
- - -		
N21_10 [1429]		-

N21_11 [1430]		-

N21_12 [1431]		-

N21_13 [1432]		-
- - -		
N21_14 [1433]		-

N21_15 [1434]		-

N21_16 [1435]		-
- - -		
N21_17 [1436]		-

N21_18 [1437]		-

N21_19 [1438]		-

N21_20 [1439]		-

SET 25-28

Group of parameters number [1298]
Settings of selected parameters for sets 25 to 28 . Settings of individual sets can be done by F3 key on the control panel, for a particular parameter.

MENU \SETTINGS \PAR. SETS \ USER SETS \SET 25-28

Name [ID]	Description	Def.

UNIFREM VF v.2.41x

SET 29-32

Group of parameters number [1299]
Settings of selected parameters for sets 29 to 32 . Settings of individual sets can be done by F3 key on the control panel, for a particular parameter.

MENU \SETTINGS \PAR. SETS \USER SETS \SET 29-32

Name [ID]	Description	Def.
N29_1 [1460]		-
$-\div-$		-
N29_2 [1461]		-
$-\div-$		-
N29_3 [1462]		

Name [ID]	Description	Def.
- - -		
N29_4 [1463]		-
- - -		
N29_5 [1464]		-
- - -		
N29_6 [1465]		-
- - -		
N29_7 [1466]		-
- - -		
N29_8 [1467]		-

N29_9 [1468]		-
- - -		
N29_10 [1469]		-
- - -		
N29_11 [1470]		-
- $\div-$		
N29_12 [1471]		-
- - -		
N29_13 [1472]		-

N29_14 [1473]		-
- - -		
N29_15 [1474]		-
- - -		
N29_16 [1475]		-
- - -		
N29_17 [1476]		-
- - -		
N29_18 [1477]		-
- - -		
N29_19 [1478]		-
- - -		
N29_20 [1479]		-
- $\div-$		

8 Converter function configuration manual

8.1 Production (factory) settings

UNIFREM 400 VF frequency converter are shipped with valid production (factory) parameter settings, that can be restored at any time using the FACTORY SETTINGS command. Reseting to factory settings is suitable if the converter was already used in an unknown operation or if it is not received directly from VONSCH s.r.o. All configuration manuals in this handbook are based on this converter setting.

Parameter ID: 297
SETTINGS -> PAR. MANAGEMENT -> FACTORY SETTINGS
Reseting to factory settings will overwrite all parameters, including configuration of control, inputs and outputs.

8.2 Load parameters (motor)

Parameters in the group SETTINGS -> LOAD (MOTOR) are important for proper function of individual converter functions. Here are mostly nameplate nominal values of a connected device (motor, transformer, etc).

Parameter name	ID	Description
Nom. power [W]	357	
Nom. voltage [V]	59	
Nom. frequency [Hz]	4	
Nom. current [A]	151	
Nom.rot.speed [ot/min]	356	Usual label (catalog) motor parameters.
Transmission ratio []	888	Transmission ratio number
Rotation speed trajectory [m]	889	Represents for example the circumference of the wheel behind the transmission.
Out.phase sequence []	326	Motor phase order change option.
Time constant. MT [s]	79	Magnetizing time constant (excitation)
Reset motohours. MT	1075	Reset the operation motohours of the motor (after a replacement or maintenance).
Set motohours. MT	502	Preset the motor motohours.

8.3 Control modes

UNIFREM 400 VF frequency converters use flexible independent V/f control to precisely frequency and voltage control. On applications for special and high-speed motors, the relation between frequency and voltage can be limited to defined V / f characteristics (V / f curve).

Parameter ID: 782
SETTINGS -> CONTROL AND REGULATION -> V/f CONTROL -> V/f curve

8.3.1 INDEPENDENT CONTROL OF VOLTAGE AND FREQUENCY

```
Parameter ID: }78
SETTINGS-> CONTROL AND REGULATION -> V/f CONTROL -> V/f curve = Disabled
```


FREQUENCY CONTROL

Frequency setpoint is configured in the parametric group on UNIFREM 400 VF frequency converters

Parameter ID: 7
 SETTINGS -> COMMANDS -> FREQUENCY SETPOINT

Frequency reverse source is inaccessible and inactive on single-phase converters.

FREQUENCY RAMP

To prevent sudden output frequency changes during control, the converter can use flexible ramp functions which ensure smooth transitions between different frequency setpoint values. Their parameters can set allowed frequency change range (min., max.), ramp break points and also corresponding ramp times. Using these parameters, it is possible to adjust the drive dynamics for a specific application.

To adjust the ramps in a positive rotation direction, parameters from this group are used:
Parameter ID: 106
SETTINGS -> CONTROL AND REGULATION -> FREQUENCY RAMPS

S-CURVE

If you demand that the acceleration should not change too quickly, it is suitable to use an S-curve that ensures smooth acceleration changes. This is applicable to drives, where you need to minimize jerks and torque shocks during start or stop.

S-curve operation mode can be configured using the parameter:
Parameter ID: 874
SETTINGS -> CONTROL AND REGULATION -> FREQUENCY RAMPS -> S-CURVE -> Scurve mode

Enabling of the S-curve	$\square \square$ enabling S-curves
S-curve ramp-up +	 ramp curve for positive ramp-up
S-curve ramp-down +	 ramp curve for positive ramp-down
S-curve ramp-up -	 ramp curve for negative ramp-up
S-curve ramp-down -	 ramp curve for negative ramp-down
S splitting	 zero crossing

Curve rate of the S-curve and its shape can be configured using the parameter:
Parameter ID: 873
SETTINGS -> CONTROL AND REGULATION -> FREQUENCY RAMPS -> S-CURVE ->S-curve curvature

VOLTAGE CONTROL
UNIFREM 400 VF frequency converters voltage setpoint is configured using the parametric group:

Parameter ID: 787

SETTINGS -> COMMANDS -> VOLTAGE SETPOINT

VOLTAGE RAMP

Similar to frequency, voltage changes are limited by an adjustable ramp in a parameter group:
Parameter ID: 976
SETTINGS -> CONTROL AND REGULATION -> VOLTAGE RAMP

Maximal value of the voltage, which will be generated by the converter is configured by a parameter:

Parameter ID: 495
SETTINGS -> CONTROL AND REGULATION -> VOLTAGE RAMP -> Maxim. voltage [\%]
This parameter represents value of the maximal voltage in percentage from the nominal load voltage.

8.3.2 V/f CURVE

Parameter ID: 782
SETTINGS -> CONTROL AND REGULATION -> V/f CONTROL -> V/f curve = turned on
Basic feature of the V / f control is, when the output voltage frequency increases, size of this voltage on the output increases accordingly until maximal value limit. This provides constant excitation (magnetic flux) of the load.

When the V/f curve is turned on, the meaning of the entering channel changes in a way, that it does not affect the voltage value directly but indirectly - through the V/f curve end voltage. So the setpoint channel VOLTAGE SETPOINT affects the slope of the basic configured V/f curve.

Basic V/f curve is the relation between the voltage and the frequency setpoint at a nominal voltage setpoint, which parameters are::

Parameters of the basic V/f curve:

Parameter name	ID	Description
V/f curve	$\mathbf{7 8 2}$	Voltage setpoint calculation setting.
Starting voltage (min) [\%]	$\mathbf{9 0}$	Starting voltage of the V/f curve and minimum limit of the output voltage which corresponds the percentage value of the nominal load voltage.
End voltage [\%]	$\mathbf{9 4}$	End voltage of the V/f curve which corresponds the percentage value of the nominal load voltage.
Frequency shift [Hz]	$\mathbf{9 8}$	Frequency shift of the V/f curve.
V/f Exponent []	$\mathbf{9 1}$	V/f curve exponent.
Exponential shift V/f	$\mathbf{9 2}$	V/f curve shift exponent in the range from 0 Hz to Freq. shift.

Picture: Parameters of the basic V/f CURVE:

Curvature of the static V/f curve can be used on loads with a soft torque characteristics to ensure power saving motor operation on low rotation speed or to ensure a soft torque characteristics in the low rotation speed zone. Curvature and smoothening is achieved by configuring the exponents for individual V/f CURVE sections.

Picture: Curvature (exponents) of the V/f CURVE:

Basic V/f curve is a general and simple tool to configure the control of special or high-speed motors. Using it, it is easily possible do adjust parameter configuration from older frequency
generator generations (SIFREM, VQFREM) or converter from other manufacturers or their replacements.

UNIFREM VF v.2.41x
VONSCH
Picture: Block scheme of basic UNIFREM VF 400 converter control structures:

8.4 Maximal current controller (MCC)

Maximal current controller is a standard function of UNIFREM 400 converters, and its function is to restrict output current into the motor by correcting the output frequency. Function, as well as the controller itself, are activated in the parameter:

Parameter ID: 352

SETTINGS -> CONTROL AND REGULATION -> V/f CONTROL -> MAX. CURRENT CONTROLLER (MCC) -> Max.current contr. = motoric or = regenerative

The controller operates in motoric and regenerative operating mode.

Max. current controller	Frequency is decreased in motoric operating mode and increased in regenerative operating mode if current treshold is reached.
motoric	\boxed{V}
regenerative	

Current limit for the motor operation.
Parameter ID: 5
SETTINGS -> CONTROL AND REGULATION -> MAX. CURRENT CONTR. (MCC) -> Max. mot. current M. [A]

Current limit for the regenerative operation.
Parameter ID: 549
SETTINGS \rightarrow CONTROL AND REGULATION \rightarrow MAX. CURRENT CONTR. (MCC) -> Max. regen. current [A]

In specific cases, converter can adjust the restriction value according to the another criterias.
At low frequencies, the current restriction increases to the permissible overload limit in order to achieve a higher starting torque. At high frequencies the current restriction decreases to prevent motor operation in unstable part of the torque characteristics (area of power derating).

Furthermore, the „Power restriction" function can reduce the current restriction, if its conditions are met, such as high thermal integral of converter, high cooler temperature or if the conditions of power restriction are met when selecting parameter: PR Signal [1088] (signal the power is restricted according to).

The current value of the motoric restriction of the current is signalised by the diagnostic value:
Parameter ID: 494
DIAGNOSTICS $->$ Control $->$ Additional values -> Max. current [A]
Picture: Image: Specific cases of maximum current limit adjustment

WARNING!
In case, that the motor is loaded constantly in regenerative mode, the MCC is active and the STOP command is received, the situation can happen that the rotation speed will not decrease and the drive will not be turned off. In this case, it is necessary to increase the value of the maximal regenerative current or generate the RESET command or interrupt the safety(emergency) input.

Parameters of the controller (P, I and D) influence the speed, the converter can restrict current with and prevent undesired current increase over allowed limit.

Parameter ID: 353
SETTINGS -> CONTROL AND REGULATION -> V/f CONTROL -> MAX. CURRENT CONTROLLER (MCC) -> P component of the MCC []

Parameter ID: 354
SETTINGS -> CONTROL AND REGULATION -> V/f CONTROL -> MAX. CURRENT CONTROLLER (MCC) -> I component of the MCC [$\mathrm{ms} \div \mathrm{s}$]
Parameter ID: 1047
SETTINGS -> CONTROL AND REGULATION -> V/f CONTROL -> MAX. CURRENT CONTROLLER (MCC) -> D component of the MCC []

MCC restricts the slope of frequency increase or decrease by ramps, but it can also take up during steady speed, when the current exceeds configured limits. If the frequency correction reaches frequency limit Fmin [110] or Fmax [112], it will not longer correct the frequency which will be affecting the current increase and then "Overcurrent" or "Converter overload" faults are possible.

Fast correction of the starting voltage based on excessive current can be turned on to speed up the the MCC reaction and to improve operation in the low frequency range. The gain is adjusted by following parameter:

```
Parameter ID: }79
SETTINGS -> CONTROL AND REGULATION -> V/f CONTROL-> MAX. CURRENT
CONTROLLER (MCC)-> MCC Gain [ ]
```

This parameter serves to set the voltage and frequency correction of MCC:

```
Parameter ID: 1191
SETTINGS -> CONTROL AND REGULATION -> V/f CONTROL -> MAX. CURRENT
CONTROLLER (MCC) -> Freq. boost. MCC [ ]
```

Scalar (V/f) drive with current limit can be tuned by using these two parameters in order to satisfy maximal current and to keep the frequency not too low, to prevent torque lose (See. stiffen up the drive in the previous picture).

Current restriction may cooperate with slip compensation and with compensation of IR in V/f curve, as well as with other converter functions. There is a category of drives, where it is not appropriate to use MCC. These are stroke or lift drives of cranes, elevators and conveyors, where current restricition could result in the weight fall or violation to ramp speed. Then drive at high current reports generally a fault.

Picture: Typical current and frequency course when MCC takes up on a drive with a flywheel:

Example: Current limit (MCC) takes up on a real drive:

UNIFREM VF v.2.41x

Maximal current at ramp-down, regenerative mode

Maximal current at ramp-up, motoric mode

8.5 Flux braking

Several braking modes can be used in frequency converters. Mainly it is the use of a braking module and a braking resistor. However, there are drives, where braking conditions occur partly and not often. For example, if it is needed to stop the pump in 10 seconds, but during the rampdown an "Overvoltage" fault occurs, it is not necessary to use the braking module. If for example 13 or 15 second long ramp-down ends without a fault, the amount of generated energy can be decreased by using the Flux braking function.

To activate the function - flux braking use this parameter:
Parameter ID: 775
SETTINGS -> CONTROL AND REGULATION -> FLUX BRAKING -> Flux braking (FB)

Flux braking (FB)
turned off
turned on

It works as follows: the converter starts to increase the motor voltage after exceeding the "FB working voltage", and excitation (flux) is increased. This causes that a part of the energy is not flowing from the motor to the converter, but it is transformed to heat in the motor coil. Increasing the flux braking rate is possible by using the parameter "Flux braking gain [777]".

[^0]UNIFREM VF v.2.41x
VONSCH
Example: Activity of flux braking on the real device

Flux braking at lower gain

Flux braking at higher gain

During flux braking, bigger motor overheating occurs, so it is necessary to provide sufficient thermal protection, thermistor or PT100, possibly forced cooling.

8.6 Power restriction

In a real environment, the need to keep the drive in operating mode even if the motor or the converter is overloaded can occur. Possible fault caused by overloading or overheating should cause outage of the technology, which could be worse than an eventual short term decrease of the motor power. Because of this, UNIFREM 400 XXX frequency converters have a power restriction functional block in their software equipment.

Power restriction function is configured in the parameter:

```
Parameter ID: 766
SETTINGS -> CONTROL AND REGULATION -> Power restriction [ ]
```

There it is possible to activate individual sources (causes) of the power restriction or their combinations:

Power restriction (PR)	
from overload	
from the cooler temperat..	
from the motor overload	
from	
from external temperature	

From overload	Thermal integral INV (ID 31) $>90 \%$	Fault $=100 \%$
From cooler temp.	Cooler temp. (ID 74) $>$ C_temp warning (ID 767)	Fault $=90{ }^{\circ} \mathrm{C}$
From motor overload	Temp integral MT (ID 33) $>90 \%$	Fault $=100 \%$
From external temp.	ETP Temp. (ID 869) $>$ ETP Warning (ID 865)	Fault $=$ ID 866
From the power restriction signal	P[1088]) PR Signal beyond the value P[1089] PR signal limit.	

When warnings from the external thermal protection of the converter (motor) occur, power restriction is activated. Power restriction output is the correction of the maximal current so the corresponding displayed status values do not exceed fault level and converter operation does not stop. Power restriction is executed by restricting the maximal current. The maximal current controller (MCC) has to be activated and functional (ID 352).

Example: Power restriction operation from the converter overload of an undersized drive with an induction motor
(thin line - Thermal. integral. INV, thick line - Current MT).

A - Drive was running under full load, temperature integral of the converter reached 90% level and then restricted the current so

B - Drive was relieved and the integral is decreasing. The drive is capable to generate maximal power again.

8.7 Optimization

Optimization is an individual management and control block and its goal is to ensure searching and maintaining optimal values of any displayed value or parameter of the converter by using an input channel. Optimization has its own output, which operates in the interval 0.000 to 1.000 and it is possible to display it in the converter diagnostics:

Parameter ID: 423
 DIAGNOSTICS -> Functions -> Optimization -> OPT Output []

The optimization output connection to any entering channel is performed after selecting this parameter by selecting the signal (source) of the corresponding entering channel.

Value selection, which criteria should be searched by the optimization block is performed by parameter configuration:
Parameter ID: 80
SETTINGS -> FUNCTIONS -> OPTIMIZATION -> Optimization signal

Signal selection	
MEE	trol
-Slip freq.	0.00 Hz
-Rpm	0 RPM
- Voltage DC	318.5 V
- Voltage MT	0.0 V
Current TIT	0.00 A

Motor current, motor power and motor torque are selected as the optimization signal in standard optimization tasks mostly. After selecting one of the analog inputs, it is possible to optimize any technological value.

Optimization criteria defines, if converter will search for the minimum or the maximum of the selected signal. For example on generator drive of hydro power-plant, if we want to maximize the produced power and minimalize the power losses on a pump drive.

To select the criteria, use the parameter:

Opt. criteria	
Signal min.	
Signal max.	

Blocking (reset) the optimization and measurement condition:

Two signals are in the OPTIMIZATION block, that control the optimization operation conditions and a condition, when it is possible to measure optimized values.
To configure the conditions for blocking and reseting the optimization, use the signal:
Parameter ID: 263
SETTINGS -> FUNCTIONS -> OPTIMIZATION -> Opt. Reset signal

Signal selection			
MEENU DIAGHOSTICSIC	averter sta		
-MT operational hours	44.3 h		
- Converter state	---\|--	-	
- Converter state negated	W-ए-W		
Warning	0×0		
- Warning 2	0×0		

Opt. reset	
Error	\square
SW_Er__Pin	\square
Operation	\square
DC charged	\square
MT excited	\square

For example: If the optimization is set to search for maximal or minimal power, it is necessary to block its operation when the device is turned off. Then the parameter „Opt. reset signal" [263] is set to the value Converter status negated (negation of the status word) and the command Run (converter generates the output voltage) is set in the parameter „Opt. Reset" [273] concurrently.

Since the status word is negated, it means that, optimization Reset is active when the converter does not generate the output voltage.

When the optimization output change causes transiting effects which duration period is variable, it is necessary to delay measuring optimization criteria. Signal from the following parameter is used to configure measurement conditions:

Parameter ID: 279
SETTINGS -> FUNCTIONS -> OPTIMIZATION -> Opt. meas. signal
If the measurement should be executed after the ramp function ends, in this signal the value Converter status negated (negation of the status word) is selected again and the bit "Accel/Decel. F" is set in the parameter Opt. meas. turns on [160]. This means, that after the optimization output change, the process is waiting for the ramp function to settle and then a new measurement for the next optimization step is performed.

To adjust and configure the optimization process, use folowing parameters:

Parameter name	ID	Description
Optimization period	$\mathbf{1 3}$	Measuring period of one step of the optimization algorithm. Time between individual steps can be extended by the measurement condition (see "Opt. Measurement signal [279]").
Scan	$\mathbf{4 2 0}$	Activate/Deactivate the scan mode of the optimization output when starting the optimization. It is used to find the starting value of the optimization output. It searches for the global extremum from multiple possible extrems by searching the whole range by a maximal step of 0.05.

delta Sign.	$\mathbf{2 5 5}$	Defines the value of the maximal allowed variance of the actual value "Optim. Signal [80]" from the global extreme. Global extremum is getting closer to the actual output value from the optimization (scan)
start, which follows the slow changes of the global extremes. After		
deflecting the output from the global extremum by the defined value of		
"delta Sign." a new scan is performed, if it is activated.		

Optimization - principle of the operation by maximizing the power using frequency

Example: Optimization operation on the drive

(thick line - OPT. Output, thin line - Power drain). In this case, the Start Direction (ID = 426) is set to "From maximum".

A - Optimization starting point found by scanning. It will be configured accurately later during fine tuning.

B - Technological conditions change optimization output settling and finding the new optimum point.

8.8 External thermal protection (ETP)

If there is a temperature sensor or system of multiple sensors of the same type on the device, of which the frequency converter is a part, it is possible to connect these sensors into the converter and evaluate the device temperature and if needed, generate warning or fault. ETP block parameters can be found in:
Parameter ID: 860
SETTINGS -> FUNCTIONS -> EXTERNAL THERMAL PROTECTION (ETP)
One free analog input and output are used to connect the temperature sensors. Mathematical model calculates the optimal "ETP Current", which will be selected as a signal of the corresponding AOUTx. Voltage drop occurs on AINx, AINx writes it into the parameter "ETP Voltage". Sensor resistance and then temperature are evaluated from this data. After exceeding the warning or fault limit, ETP temperature warning or fault is generated.

Meaning of the parameters and their logical connection is explained in the following picture.

One analog input (free) and one analog output (free) of the X1 terminal of UNIFREM processor board can used to connect the sensor.

ETP setting example $-3 \times$ PTC sensor types connected in series:
PART SETTINGS:
PTC sensor setting:

[ID]	Path	Parameter	Setting
861	MENU ISETTINSS IFONCTIONS IEXTERNAL THERMAL PROTECTION (ETP)	ETP Type	PTC thermistor
906		Voltage source ETP	AIN2
862	MENU ISETTINGS IFUNCTIONS (EXTERNAL THERMAL	Sensor count	3

Example of setting - ETP warning and fault lines derived from the parameters:

865	MENU ISETTINGS IFUNCTIONS IEXTERNAL THERMAL	ETP Warning	$90^{\circ} \mathrm{C}$
866	MENU ISETTINGS I FUNCTIONS IEXTERNAL THERMAL PROTECTION (ETP)	ETP Fault	$160.0{ }^{\circ} \mathrm{C}$

ETP maximal current restriction:
Parameter ETP maximal current (ID 1087) restricts the current to the EHP sensors to prevent undesired overheating of the sensor. If a special sensor is used, it is necessary to set the maximal current according to its specification. In the EHP = PTC type, the measuring current is limited to the 1 mA value and in the PT100 type to 3 mA and then this parameter is inactive.

Analog input AIN2 setting:

[ID]	Cesta	Parameter	Setting
154		AIN2 Type	0-10V

The option of noise filtering on the analog input:

262	MENUU SETTINGS INPUTS AND OUTPUTS I ANALOG INPUTS \mid	AIN2 Filter	1s

Analog output AOUT2 setting:

[ID]	Path	Parameter	Setting
362	MENU ISETTINGS INPUTS AND OUTPUTS I ANALOG OUTPUTS	AO2 Type	0-20mA
1077	MENU ISETTINSS INPUTS AND OUTPUTS I ANALOG OUTPUTS	AO2 Source	ETP Current
366	MENU ISETTINGS IINPUTS AND OUTPUTS IANALOG OUTPUTS	Sig. (AO2_A)	0 mA
368	MENU ISETTINSS INPUTS AND OUTPUTSS I ANALOG OUTPUTS	Sig. (AO2_B)	20 mA
945	MENU ISETTINGS IINPUTS AND OUTPUTS I ANALOG OUTPUTS	AO2_A	0 mA
946	MENU ISETTINGS INPUTS AND OUTPUTS IANALOG OUTPUTS \|AO2I	AO2_B	20 mA

ETP DIAGNOSTICS:

The possibility of checking the measured data:

[ID]	Path	Parameter	Description
869	MENU DIAGNOSTICS \mid Functions \Ext.t thermal protection \backslash	ETP Temperature [${ }^{\circ} \mathrm{C}$]	Temperature of the ETP sensor.
870	MENU \| DIAGNOSTICS \mid Functions \Ext.t thermal protection $\$ & ETP Current [mA] & Measuring current of the external thermal protection. \hline 867 & MENU I DIAGNOSTICS \mid Functions	ETP Voltage [V]	measured voltage drop on the ETP sensor
871	MENU I DIAGNOSTICS \ Functions \Ext.t thermal protection $\$ & Sensor rezistance [Ω]	Resistance value of the ETP sensor.	

8.9 Using the parameter set switching for a special behavior of converter functions

UNIFREM frequency converters contain 4 user parameter sets, which can be switched and edited independently in the converter. Set switch period is currently less than 50 ms . If the parameter settings are not different for parameters which block the change on-the-run (like Output phase sequence), it is possible to switch the sets during operation. The source of the set switch can be configured to any converter signal. This allows to solve special functions conditioned by changing the parameters, which individual functional blocks of the converter when using single set do not allow.

For example:

- V/f curve parameter change when changing the motor rotation direction.
- converter control sources change from the binary input (switching locally/remotely).
- controller parameter adaptivity according to the regulated frequency range.
- and many more.

Parameter set switch conditions are configured in these converter parameters:
Parameter ID: 206
SETTINGS -> PAR. SETS
Switch set of parameters example configuration:

Parameter name	ID	Description
Set switching	657	Setting the way of switching between the sets. (Combined, Single, Parameter) Set switching Combined Single Parameter Active set switching setting example
Possibility to switch the active set:		SETTINGS -> PAR. SETS -> Set switching [657] -> Parameter Option of the active set setting:
Active set [205] -> option choice Set 1, Set 2, Set 3, Set 4		

Bit3 set source	1.way Set switching [657] - Combined - Only the first 2 bits of the binary switch are used. Output set corresponds to the binary combination of these bits. If no bits are active, the $1^{\text {st }}$ set is active. If only 1 bit is active, the $2^{\text {nd }}$ set is active, and so on. SETTINGS -> PAR. SETS -> SET SWITCH Setting possibility: Bit1 set source and Bit2 set source Binary switch setting example 2.way Set switching [657] - Single - Every single bit of the binary switch represents one set (bit 1 represents set 2). If more switches are active, the set with the higher sequence number is active. If no binary switch is active, the 1st set is active. SETTINGS -> PAR. SETS -> SET SWITCH Setting possibility: Bit1 set source, Bit2 set source, Bit3 set source Binary switch setting example
SPECIAL SETTING [224] Special functions setting for the set switches.	Special source of set switch setting example: SETTINGS -> PAR. SETS -> SET SWITCH -> Bit1 set source [641]> special Then there is the possibility of setting SETTINGS -> PAR. SETS -> SET SWITCH -> SPECIAL SETTING -> Bit1 set signal [645] -> Signal that is evaluated if the $1^{\text {st }}$ bit of the binary switch is active. Either a numeric or a bit signal can be chosen.

Before switch source setting of the active parameters set, it is necessary to configure the drive in the SET1 completely, it means that at deactivated set switch conditions. Then copy this setting to other sets by using commands:
MENU -> SAVE / RESTORE -> Sets copy

Parameter backup
Save parameters
Restore parameters
Sets copy
Parameters transfer
Manage backups in the pa..

Commands to copy parameter sets:

Function	Choice	Description		
From set				
To set			\quad Set1..Set4	Copy of the parameters from set 1..4 to the selected set 1..4.
:---				
Set1..Set4				
Confirm by pressing the "Copy"				

Sets copy	
From set	Set 1
To set	Set 2
WCopy	

At the end, it is necessary to configure the active set switch condition. If we want to use for example only two parameter sets and SET2 should be active on negative speed on the converter output (weight lowering with a different V/f curve starting voltage) Then the following parameter values are selected:

Parameter name	ID	Description
Set switching	657	Single
Bit1 set signal	645	SETTINGS -> PAR. SETS -> SET SWITCH -> Bit1 set source [641] > special Source of set switch choice: Status word negated [547]: SETTINGS -> PAR. SETS -> SET SWITCH -> SPECIAL SETTING - > Bit1 set signal [645] -> "MENU\ DIAGNOSTICS\ Converter state \rightarrow Status word negated
Bit1 set switch on	646	SETTINGS -> PAR. SETS -> SET SWITCH -> SPECIAL SETTING Bit1 set switch on [649] 14th bit of status word is chosen „Frot > 0". (As it is the negated value of the status word, this bit has the opposite meaning Frot ≤ 0.) Frot - polarity of the rotor frequency. The sign of the frequency is evaluated by mathematical model if IRC is not available.

We can configure the parameters in individual sets after selecting the edited. Information about which set is active is in the upper right corner of the display, written in a small font.

Using parameter sets thus contributes to increase variability of drive setting. With them, it is possible to solve:

- Asymmetry of ramp frequency
- Control mode switch
- Signals switching at the analog outputs
- Multiple motor control with the one converter
- Corrections or the other converter functions switch on or switch off
- ... etc.

9 Control panel - Unipanel user manual

9.1 Buttons

start	stop	reverz	Converter control, if control panel is selected as the control source.
esc			Change canceling, window closing, return (move up)
ENTER			Item selection, change confirmation
$\triangle \Omega$	∇		Moving in the menu, value changing. In the case the folder in the MENU contains more than five items, pressing one of these keys can scroll the screen. Selected row is marked dark.
\checkmark			Shift in menu, change of the order Setpoint value setting (Monitor window only; if control panel is selected as the setpoint source).
F1			MENU view - panel functions selection
F2	F3		Softkeys buttons
F4			Help view

9.2 Panel start

Control panel can be connected to the device that is on or off. Panel automatically turns on and connects to the device after the device is turned on. The panel will try to reconnect to the last connected device if the panel is connected to the multiple devices. Panel will show the list of available devices, if such device does not exist.

9.3 Display

9.4 Converter status

+	Weak battery in control panel (should be replaced).
${ }^{2}$	Graph record is running in panel.
EW	Converter is in fault - E, warnings or functional messages indication - W.
R	Converter reverse is active (negative frequency).
(1) (${ }^{\text {a }}$	Converter is stopped (square), in operation (spinning target).
1, 2, 3, 4	Number of active set in converter.

9.5 Main menu F1

Initial menu scren
Press F1, or by using the selection arrows to toggle between MENU items.
Selecting the panel function (by pressing „ENTER")

UNIFREM VF v.2.41x

an	nction selection	
國	MONITOR	Monitor view (Monitor detail) Setpoint frequency setting, if control panel is selected as the setting source
A	GRAPH	Signal record displaying.
π	SETTING	Converter parameter setting in the tree structure. Move by using selection arrows or by using the F1 button to the SETTINGS item and confirm by pressing ENTER.
-	DIAGNOSTICS	All converter status informations displaying in the tree structure.Move by using selection arrows or by using the F1 button to the item DIAGNOSTICS and confirm by pressing ENTER.
呞	HISTORY	Move by using selection arrows or by using the F1 button to the item HISTORY and confirm by pressing ENTER. Converter events (Parameters restore, parameter change..) and event history displaying (date and time of event emergence, description). After fault or event selection, recorded data at emergence will be displayed. EXAMPLE:

\triangle	ERRORS	Current fault and fault status view (persists, subtracting time after error, waiting to confirmation), converter warnings or functional messages. In the main MENU to confirm the selection with ENTER.
		EXAMPLE:
	SAVE / RESTORE	Creating and restoring backups of parameters sets. Backup management, sets copy, special partial copy.
Pr ${ }^{2}$	DEVICES	The device selection. Panel scans the bus looking for all the devices on the network. After the restart, the panel tries to connect with the last communicated coverter.

UNIFREM VF v.2.41x

9.6 Monitor, monitor detail

MENU window switches to the MONITOR window after 20 seconds of inactivity, or confirm the selection MONITOR by pressing ENTER.

MENU	\square		ए ©
國MONITOR PR GRAPHS		Moni	
- SETTINGS Solaghostics		Freq. ${ }^{\text {INV }}$ Current MT	0.00 Hz
痤HISTORY EERORS		Voltage DC	320.8 V
Fisave / Restore prs device		Relay	RELAY3
Flanguage rextisplay conilg.		Cooler temper..	$24.3{ }^{\circ} \mathrm{C}$
		Menu Change	Hepp

The basic window displays the selected monitored values after panel start.

9.7 Parameters setting

Converter contains 4 sets of parameters.

Control panel offers direct set up of the parameter if the same value is set in all the sets of parameters. After parameter change confirmation, the same value is saved to all sets of parameters.
Panel offers parameter settings for each set if different value is set in sets (if the parameter value is different in at least one set), or if the parameter is marked by pressing F3-SETS and panel will offer parameter setting for each parameter set independently.

EXAMPLE:

1. Possibility of direct setting of the selected parameters (press ENTER), because the same value is set in all 4 sets (parameter "Ramp-up break" (Id $117=50 \mathrm{~Hz}$ in this example):

2. Parameter value setting and the same value is saved in all 4 sets after confirmation.

Parameter value setting and confirm - ENTER

Parameter set value is displayed after confirmation

Same parameter settings will be saved into all sets. After pressing F3
3. Panel offers parameter setting for each set if different value is set in one of the sets, or if the parameter is "open" by pressing F3-SETS and panel will offer parameter setting for each parameter set

Selected parameter setting in the required set -> press F3

Parameter value setting and confirm with ENTER

Set selection and confirm with
ENTER

Parameter settings will be displayed after pressing F3 in the selected set

Currently unavailable parameters are displayed grey - disabled. After their selection (confirm by pressing ENTER), panel shows the parent parameter which disabled it. This also helps to make it available.

EXAMPLE:

PARAMETER "Ramp-up 1 slope (ID 124)" - Parameter is displayed grey.

After confirmation - ENTER, option to make parameter available is displayed

Parameters can be of different types and therefore their setting is different.

Command	Parameter group - grouping of parameters having common functionality - creates a tree structure - return to the higher level \square
*Motor 400/0.12	Command start and execution Press the button at the selected item with the parameter type of command Execution must be confirmed by

	on the the digit, that is currently set, if it is possible to set the parameter. If it is not possible to change the parameter, cursor is not displayed. - change will be applied immediately after confirmation
turned off turned on	One item selection from the list - one item has to be always selected - change will be applied immediately after confirmation
\mathbb{R} compensation V ST controller	Multiple options selection (MULTIPLE SELECTION) -no item may be selected -multiple items can be selected ESC - selected changes are confirmed with where the panel requires the confirmation
MEENUVILGGHOSTCS Control Freq. Freq. RT STip freq.	Parameter type of signal -selection of the parameter that affects the selected action -parameter selection from the tree structure -parameter transition in the same level -transition to the another level in the tree

9.8 Graph

Graph parameters setting - press the ke key.

GRAPH	
笏Adjust the limits	
*Clear graph	
Graph 1	Voltage DC
Graph 2	Current MT
Time scale	10sec
Sampling	0.11 s
Menu	Help
A A	A 4

Graph window is used to record the course of values of any two parameters (quantities). Their selection can be set in graph parameters settings after pressing F2.

EXAMPLE:

Marked item (Graph 1), confirm with ENTER button. In the window - Signal selection choose the required displayed value and confirm.

GRAPH	\square	Signal selection			GRAPH	
*Adjust the limits *Clear graph					*Adjust the	
		-Freq. Ind		0.00 Hz	* Clear gr	
Graph 1 Voltage DC		- Freq. RT		0.00 Hz	Graph 1	Freq. \|Nv
Graph 2 Current MT		- Slip freq.		0.00 Hz	Graph 2	Current MT
Time scale 10sec		-Rpm		0 RPFH 316.4 V	Time scale	10sec
Sampling 0.11s		- Voltage DC		316.4	Sampling	0.11 s
Henu		Henu	None	Help	Henu	Help

The first graph (Graph 1) is drawn with a thinner line and second graph (Graph 2) with a thicker line. The selected value, the maximum and minimum displayed value is displayed in the bottom part of the graph window on the left side and the current value is displayed on the right side of the window. The graph timestamps are displayed in the line over these variables. The value of the displayed time scale and device status is displayed in the upper part of the graph. \sqrt{v}.

Graph window

Time scale

Time tag

Value monitoring by using the cursor

The values of selected signals are stored in the memory with a given selected step size when running the graph (F3-START). The maximum recording time is calculated from the step size. Record continues after you restart the panel (if record was running). The period of time when there is no corresponding record is filled with backslash lines. Graph record is indicated by a graph symbol in device status bar. It is possible to switch to the another window during record and the record runs normally in the background.

S3	Start, stop of the record into the internal memory according to the options set
F2 Set	Graph options setting Adjust the limits - set the cursor in the graph to real time. Graph will be displayed in real time Clear graph - deletes the data from the graph Graph 1, 2 - selection of the recorded signals Time scale - size of the displayed section between two timestamps. tt can be changed by using arrows up and down in the graph window. Sampling - period of updating the values of selected values Record lenght - informs about the maximum record, that can fit into memory at the current set sampling Recording mode - deternines, whether the oldest samples will be overwritten or not after filling the storage memory
F4 Cursor, Record	Record - displays the last recorded signal and allows real-time record tracking Cursor - allows graph analyzing by using the cursor
Shift	Cursor position change in the cursor mode

9.9 Parameter search

Push the button 44 to get help for the selected parameter. Each parameter has its own unique Id number.

Displaying help for the selected parameter
In help window is softkey button $/$ F2 - Find ID. Possibility to enter Id of arbitrary parameter and the required parameter is displayed after confirmation (Press the ENTER button).

- The button "Compare" is used to compare the setting of the selected parameter in all sets of parameters of the each stored parameter backups. This window can be used to find differences in the settings.

9.10 Device selection for control panel

Each device is identified by its address. It is necessary to set the unique adress of each device before creating a network. If the panel loses its connection with the the converter (change of its address, interruption of the cable,..), then the panel starts to search for the device again. List of devices is displayed in the format „Address of device: Device name" after searching for available devices. Refresh the search by pressing the $\$ 2$ button.

[^0]: Parameter ID: 776
 SETTINGS -> COTROL AND REGULATION ->FLUX BRAKING -> Operating voltage FB [V] Parameter ID: 777
 SETTINGS -> COTROL AND REGULATION ->FLUX BRAKING -> Flux braking gain []

